如何判断一个语句能否构成命题.ppt_第1页
如何判断一个语句能否构成命题.ppt_第2页
如何判断一个语句能否构成命题.ppt_第3页
如何判断一个语句能否构成命题.ppt_第4页
如何判断一个语句能否构成命题.ppt_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

如何判断一个语句能否构成命题,常用逻辑用语,“数学是思维的科学”逻辑是研究思维形式和规律的科学.逻辑用语是我们必不可少的工具.通过学习和使用常用逻辑用语,掌握常用逻辑用语的用法,纠正出现的逻辑错误,体会运用常用逻辑用语表述数学内容的准确性、简捷性.,特点:都是陈述句;,都可以判断真假.,下列语句的表述形式有什么特点?你能判断它们的真假吗?(1)若直线ab,则直线a和直线b无公共点;(2)2+4=7;(3)垂直于同一条直线的两个平面平行;(4)若x2=1,则x=1;(5)两个全等三角形的面积相等;(6)3能被2整除.,(),(),(),(),(),(),命题的概念一般地,在数学中,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,判断为真的语句叫真命题。,判断为假的语句叫假命题。,结论:,命题的定义的要点:能判断真假的陈述句,用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。如何判断一个语句是不是命题?,判断一个语句是不是命题,关键看这语句是否符合“是陈述句”和“可以判断真假”这两个基本条件。有些语句中含有变量,在不给定变量的值之前,我们无法确定这语句的真假,这样的语句叫开语句,以后会专门研究。,(1)7是23的约数吗?(2)x5.(3)-24。,看看下列语句是不是命题?,不是(疑问句)不是(疑问句)不是(感叹句)是是不是,例1.下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)指数函数是增函数吗?(4)若空间中两条直线不相交,则这两条直线平行;(5);(6)x15.,真命题,真命题,假命题,假命题,上面(2)(4)具有“若p,则q”的形式.本章中我们只讨论这种形式.,“若p,则q”也可写成“如果p,那么q”“只要p,就有q”等形式.,其中p叫做命题的条件,q叫做命题的结论.,记做:,(不是命题),(不是命题),命题“若整数a是素数,则a是奇数。”具有“若p则q”的形式。,通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题的结论。“若p则q”形式的命题是命题的一种形式而不是唯一的形式,也可写成“如果p,那么q”,“只要p,就有q”等形式。其中p和q可以是命题也可以不是命题.“若p则q”形式的命题的优点是条件与结论容易辨别,缺点是太格式化且不灵活.,“若p则q”形式的命题,例2指出下列命题的条件p和结论q:(1)若整数a能被2整除,则a是偶数;(2)若四边形是菱形,则它的对角线互相垂直且平分,解:(1)条件p:整数a能被2整除,结论q:整数a是偶数。,(2)写成若p,则q的形式:若四边形是菱形,则它的对角线互相垂直且平分。条件p:四边形是菱形,结论q:四边形的对角线互相垂直且平分。,数学中有一些命题虽然表面上不是“若p,则q”的形式,例如“垂直于同一条直线的两个平面平行”,但是把它的形式作适当改变,就可以写成“若p,则q”的形式:若两个平面垂直于同一条直线,则这两个平面平行这样,它的条件和结论就很清楚了,“若p则q”形式的命题的书写,例3.将下列命题改写成“若p,则q”的形式,并判断真假:,(1)垂直于同一条直线的两条直线平行;,若两条直线垂直于同一直线,则这两条直线平行。,假,(2)负数的立方是负数;,(3)对顶角相等.,若一个数是负数,则这个数的立方是负数。,若两个角是对顶角,则这两个角相等。,真,真,例3.将下列命题改写成“若p,则q”的形式,并判断真假:,(4)垂直于同一条直线的两个平面平行;,(5)两个全等三角形的面积相等;,(6)3能被2整除;,若两个平面垂直于同一直线,则这两个平面平行。,若两个三角形全等,则这两个三角形的面积相等。,若一个数是3,则这个数能被2整除。,真,假,真,2.判断下列命题的真假:(1)能被6整除的整数一定能被3整除;(2)若一个四边形的四条边相等,则这个四边形是正方形;(3)二次函数的图象是一条抛物线;(4)两个内角等于450的三角形是等腰三角形,(真命题),(真命题),(真命题),(假命题),3把下列命题改写成“若p,则q”的形式,并判断它们的真假:(1)等腰三角形两腰的中线相等;(2)偶函数的图象关于y轴对称;(3)垂直于同一个平面的两个平面平行,解:(1)若一个三角形是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论