




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,导数的几何意义,北师大版高中数学选修2-2第二章变化率与导数,法门高中姚连省制作,2,一、教学目标:1、通过函数的图像直观地理解导数的几何意义;2、理解曲线在一点的切线的概念;3、会求简单函数在某点处的切线方程。二、教学重点:了解导数的几何意义教学难点:求简单函数在某点出的切线方程,三、教学方法:探析归纳,讲练结合四、教学过程,3,先来复习导数的概念,定义:设函数y=f(x)在点x0处及其附近有定义,当自变量x在点x0处有改变量x时函数有相应的改变量y=f(x0+x)-f(x0).如果当x0时,y/x的极限存在,这个极限就叫做函数f(x)在点x0处的导数(或变化率)记作即:,4,5,6,下面来看导数的几何意义:,如图,曲线C是函数y=f(x)的图象,P(x0,y0)是曲线C上的任意一点,Q(x0+x,y0+y)为P邻近一点,PQ为C的割线,PM/x轴,QM/y轴,为PQ的倾斜角.,斜率!,7,P,Q,割线,切线,T,请看当点Q沿着曲线逐渐向点P接近时,割线PQ绕着点P逐渐转动的情况.,8,我们发现,当点Q沿着曲线无限接近点P即x0时,割线PQ有一个极限位置PT.则我们把直线PT称为曲线在点P处的切线.,设切线的倾斜角为,那么当x0时,割线PQ的斜率,称为曲线在点P处的切线的斜率.,即:,这个概念:提供了求曲线上某点切线的斜率的一种方法;切线斜率的本质函数在x=x0处的导数.,初中平面几何中圆的切线的定义:直线和圆有唯一公共点时,叫做直线和圆相切。这时直线叫做圆的切线,唯一的公共点叫做切点。,割线趋近于确定的位置的直线定义为切线.,曲线与直线相切,并不一定只有一个公共点。,9,10,因此,切线方程为y-2=2(x-1),即y=2x.,求曲线在某点处的切线方程的基本步骤:先利用切线斜率的定义求出切线的斜率,然后利用点斜式求切线方程.,11,12,练习:如图已知曲线,求:(1)点P处的切线的斜率;(2)点P处的切线方程.,即点P处的切线的斜率等于4.,(2)在点P处的切线方程是y-8/3=4(x-2),即12x-3y-16=0.,13,(1)求出函数在点x0处的变化率,得到曲线在点(x0,f(x0)的切线的斜率。,(2)根据直线方程的点斜式写出切线方程,即,归纳:求切线方程的步骤,无限逼近的极限思想是建立导数概念、用导数定义求函数的导数的基本思想,丢掉极限思想就无法理解导数概念。,14,作业:,2.,小结:函数,在x0处的导数,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 架子工前沿技术考核试卷及答案
- 拍卖运营师基础知识考核试卷及答案
- 工程机械租赁合同履约保障措施
- 药企药品不良反应与药害事件报告奖励措施
- 与相关单位协调配合的教育教学措施
- 危险性较大石化装置分部分项工程清单和安全管理措施
- 服装制造投标设备质量保证措施
- 农田承包经营合同
- 制造业导师带徒协议签订流程
- 微型传感器生物应用-洞察及研究
- 大型展会现场安全保障工作方案
- 收费站文明服务培训
- 战术基础动作课件教学
- 2024年医师定期考核超声专业试题及答案
- 翻越浪浪山共筑新学期成长梦之开学第一课班会课件
- 2025年村级动物防疫员考试题及答案
- 公务用车安全知识培训课件
- 充电桩行业知识培训总结课件
- 免疫性脑炎护理查房
- 2025年卫生人才面试题目及答案
- 2025年医保政策解读与实务操作:考试题库(含答案)
评论
0/150
提交评论