




免费预览已结束,剩余55页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
常用离散型变量概率分布及应用,二项分布和泊松分布张合喜公共卫生学院,第一节二项分布和总体率的估计,一、二项分布(一)二项分布的概念在生命科学研究中,经常会遇到一些事物,其结果可分为两个彼此对立的类型,如一个病人的死亡与存活、动物的雌与雄、微生物培养的阳性与阴性等,这些都可以根据某种性状的出现与否而分为非此即彼的对立事件。这种非此即彼事件构成的总体,就称为二项总体(binomialpopulation)。,第一节二项分布和总体率的估计,二项分布(binomialdistribution)就是对这种只具有两种互斥结果的离散型随机变量的规律性进行描述的一种概率分布。由于这一种分布规律是由瑞士学者贝努里(Bernoulli)首先发现的,又称贝努里分布。,二项分布有两个基本假设:1.各事件是相互独立的,即任一事件的发生与否,不影响其它事件的发生概率;2.各个随机事件只能产生相互排斥的两种结果。,定理:几个相互独立事件同时发生的概率等于各独立事件的概率之积。,定理:在几个互不相容的事件中,任一事件发生的概率等于这几个事件的概率之和。,抓中两黑一白的概率:P(2)=30.125=0.375,抓中三个黑球的概率:P(3)=0.50.50.5=0.125,各种可能发生的结果对应的概率相当于展开后的各项数值,即:前例:=0.8,1-=0.2,n=3,二项分布的概率公式,如果一个事件A,在n次独立试验中,每次试验都具有概率,那么,这一事件A将在n次试验中出现x次的概率为:式中:称二项系数。,(二)二项分布的应用条件,1.各观察单位只能具有互相对立的一种结果,属于二项分类资料;2.已知发生某一结果的概率为,其对立结果的概率则为1-。实际工作中要求是从大量观察中获得的比较稳定的数值;3.n个观察单位的观察结果互相独立,即每个观察单位的观察结果不会影响到其它观察单位的结果。,(三)二项分布的性质,1.二项分布的均数和标准差二项分布的平均数:=n上式的意义:做n次独立试验,某事件平均出现的次数为n次,这一结果较为符合人们的直观想法。如果,生男孩这一事件的概率是1/2,则100个新生儿中可期望有n=1001/2=50个是男孩。当用率表示时,,(三)二项分布的性质,二项分布的标准差:标准差表示x取值的离散度或变异的大小。如n=5,=5/6,1-=1-5/6,则:,(三)二项分布的性质,二项分布的标准误若以比值或百分数表示,则标准误为:p被称为率的标准误(standarderrorofrate),用来反映随机抽样获得的样本率p与总体之间的抽样误差大小。,(三)二项分布的性质,二项分布的标准误若以比值或百分数表示,则标准误为:实际工作中常用p作为的估计值,得:,(三)二项分布的性质,2.二项分布的累计概率常用的有左侧累计和右侧累计2种方法。从阳性率为的总体中随机抽取n个个体,则(1)最多有k例阳性的概率P(xk)=P(0)+P(1)+P(k)(2)最少有k例阳性的概率P(xk)=P(k)+P(k+1)+P(n)=1-P(xk-1),(三)二项分布的性质,3.二项分布的图形二项分布的图形,取决于两个方面,其一为事件发生的概率,其二为样本含量n。当=1-=1/2时,二项分布的图形是对称的;当1/2时,二项分布的图形呈右偏态;当与1-不变时,即使1-,但随着n的增大,二项分布的的偏态程度会逐渐降低而趋于对称。,二项分布总体不同样本例数时的抽样分布,二、二项分布的应用,(一)、总体率的估计有点值估计和区间估计。1查表法:当n较小,如n50时,特别是p很接近于0或1时,可由附表6百分率的置信区间表直接查出。P709orp817例:某地对13名输卵管结扎的育龄妇女经壶腹部吻合术后,观察其受孕情况,发现有6人受孕,据此估计该吻合术妇女的受孕的95%可信区间此例:n=13,x=6查表得95%CI为:19%75%。,二、二项分布的应用,(一)、总体率的估计1查表法:附表6百分率的置信区间表直接列出了Xn/2的部分。其余部分可以查n-x的阴性部分的QLQU再相减得PLandpUPL=1-QL1-QU例:某地调查50名儿童蛔虫感染情况,发现有10人大便中有蛔虫卵,问儿童蛔虫感染率的95%置信区间是多少?此例:n=50,x=10查表得95%CI为:10%34%。,二项分布的应用,2正态近似法:应用条件:np及n(1p)均5pusp例:在某地随机抽取329人,做HBsAg检验,得阳性率为8.81%,求阳性率95%置信区间。已知:p=8.81%,n=329,故:95%CI:8.811.961.56;即5.75%11.87%。,二项分布,下表是用PUasp时要求的P值与N的大小参考数字。PnnP0.530150.450200.380240.2200400.1600600.05140070,二项分布的应用,(二)差异的显著性检验1直接法例某医院用甲药治疗某病,其治愈率为70%,今用乙药治疗该病10人,治愈9人,问甲乙两药疗效有无差别?已知:=0.7,1-=0.3,假设两药疗效无差别,则治愈与非治愈的概率应符合二项分布,即:,如果甲乙两药疗效无差别,按甲药的治愈率(70%)用乙药治疗10人应治愈7人,实际治愈9人,相差2人。双侧检验,计算相差2人及2人以上的总概率,即x9和x5的概率之和:P=0.000006+0.000138+0.001447+0.009002+0.036757+0.102919+0.121061+0.028248=0.299577或:P=1-(0.200121+0.266828+0.233474)=0.299577,P=0.2995770.05,差异无统计学意义,尚不能认为乙药疗效优于甲药。本例如采用单侧检验,即要求判断乙药疗效优于甲药?此时只需计算相差2人及以上的总概率:P=P(9)+P(10)=0.121061+0.028248=0.149309P0.05,差异无统计学意义,尚不能认为乙药疗效优于甲药。,3.研究疾病的家族聚集性例某单位发生乙肝暴发流行,经调查4口之家共288户,其中无病例的167户,发生1例的51户,2例的50户,3例的17户,全家发病的3户,问乙肝的发病是否具有家族集聚性?=214/1152=0.1858,1-=0.8142计算发病数x=0,1,2,3,4时的理论概率和理论户数。列表,比较实际户数与理论户数差别有无显著性意义。,二项分布展开计算表,二项分布拟合优度的2检验,2=91.81,按=组数-2=5-2=3查2界值表得:20.01(3)=11.345,故P50时(有人认为当20),泊松分布就近似于正态分布。,Poisson分布总体均数不同时的抽样分布,(三)Poisson分布的性质,当n很大,p很小,np=为一常数时,二项分布近似于泊松分布。p愈小,近似程度愈好。例:据以往经验,新生儿染色体异常率为1%,试分别用二项分布和泊松分布原理,求100名新生儿中发生x例(x=1,2,3.)染色体异常的概率。,二项分布与泊松分布的比较,由上表可见,二者计算结果非常接近,当n愈大其接近程度愈好,但泊松分布的P(X)计算较为简便。,5.Poisson分布的可加性如果相互独立的k个随机变量都服从泊松分布,则它们之和仍服从泊松分布,且其均数为k个随机变量的均数之和。此称为泊松分布的可加性。,例:已知某放射性物质每10分钟放射脉冲数呈泊松分布,5次测量的结果分别为35、34、36、38、34次,那么,50分钟总计的脉冲数177次,亦呈泊松分布。因此,泊松分布资料可利用可加性原理使20,这样就可以用正态近似法处理。,Poisson分布的应用,置信区间的估计对于小样本资料的泊松分布置信区间估计,可以查附表7。p448例由一份混合好的自来水中取1ml水样,培养得细菌5个,请估计原水中每ml细菌数95%的置信区间。查附表7:样本计数X=5,95%CI:1.611.7。,Poisson分布的应用,置信区间的估计对于大样本资料(X50)的置信区间估计,可以近似地运用正态分布法进行,即:95%置信区间为:99%置信区间为:例同一份样品分别用10个平皿进行培养,共数得菌落数1460个,试估计该样品菌落数95%置信区间。本例:X=1460/10=146(个)95%CI:,即122.32169.68。,Poisson分布的应用,泊松分布的配合例:将培养皿中的细菌稀释液置于血球计上,数出小方格中的细菌数,共计128个方格,计数结果见下表。问此分布是否符合泊松分布?表细菌在计数小方格中的分布,Poisson分布的应用,计算过程:求出样本均数以代替,按照泊松分布的概率公式求出X=0,1,2,3,4时的概率P(X)。本例=1.5234,代入公式得:P(0)=e-x/x!=e-1.5234(1.5234)0/0!=0.2180P(1)=e-1.5234(1.5234)1/1!=0.3321P(2)=e-1.5234(1.5234)2/2!=0.2529P(3)=e-1.5234(1.5234)3/3!=0.1284P(3)=e-1.5234(1.5234)4/4!=0.0489,也可按下面的递推公式计算:,验算:P(0)+P(1)+P(2)+P(n)=1本例:0.2180+0.3321+0.2529+0.1284+0.0489=0.9803以各组的概率P(X)乘以n即为X=0,1,2,3,4按泊松分布的理论频数。将理论频数与实际频数比较(2-test),判断此分布是否符合泊松分布。,Poisson分布拟合优度检验计算表,2=(A-T)2/T=1.3606因拟合泊松分布时用了n和,故=组数-2=5-2=3。查2界值表得20.05(3)=7.81,故P0.05结论:实际分布与理论分布差别无统计学意义,可认为符合泊松分布。,Poisson分布资料的差异显著性检验,例:某种生物制剂的异常反应发生率一般在1/万左右,今试用该生物制剂新制品,在受试者100人中发现1人有异常反应,问该生物制剂的异常反应率是否高于一般?假设新制品反应率与一般反应率相同,则100人中反应的平均数为:H0:=0=1001/10000=0.01本例=0.0001,很小,n=100,很大,可用泊松分布作近似计算,100人中1例异常反应也不出现的概率为:,Poisson分布资料的差异显著性检验,100人中1例异常反应也不出现的概率为:出现1例及1例以上的概率:P(x1)=1-P(0)=1-0.990050=0.009950P50,可用正态近似法进行泊松分布的检验。H0:两种培养基的菌落数相同,H1:两种培养基的菌落数不同。=0.05。,Poisson分布资料的差异显著性检验,在对泊松分布资料进行显著性检验时,如两样本观察单位数相同,则采用下式:x1、x2分别为两样本各观察单位的计数之和。如两样本观察单位数不等,则检验时用下式:,Poisson分布资料的差异显著性检验,本例是在相同条件下培养计数菌落数,因此可认为观察单位数相等。X1=100、X2=150,则:u0.01=2.58,故P20的条件。为此,可利用泊松分布的可加性,把若干个观察单位合并。,应用Poisson分布应注意的问题,两均数比较时,要注意观察单位(时间、面积、容积、人口基数等)是否相同,若不相同,须化为相同的观察单位后再作比较。而且,只能将大单位化为小单位,不能将小单位化为大单位。例如,将人口基数不足10万查得的结果,按比例把基数扩大为10万的结果是不合适的。再者以10万人口为观察单位时,两样本均数的差别有显著性,不等于以1万人口为观察单位时,两样
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年注册验船师资格考试(B级船舶检验专业基础安全)能力提高训练题及答案一
- 2025年公路水运检测师考试《道路工程》真题及答案(完整版)
- 2025年注册验船师资格考试(C级船舶检验法律法规)强化练习题及答案一
- 2025年(自考)护理管理学考试题库及答案(含各题型)
- 2025年高校教务招聘笔试模拟题及考点解析
- 2025年高级测试工程师面试题解析及测试技巧
- 2025年金融专业毕业生求职面试模拟题集及解析
- 2025年考试无忧技术类招聘笔试模拟题及答案速递
- 校长读书汇报课件
- 2025年信息系统项目管理师中级模拟题与答案指南
- 排尿评估及异常护理方法
- 语音厅新人培训:从零开始到主播之路
- 2025央国企AI+数智化转型研究报告
- 公司销售pk策划方案
- 2025年浙江省初中学业水平考试数学试卷真题(精校打印)
- 最小单元应急管理制度
- 洞藏酒项目商业实施计划书
- 税收征管数字化转型实践的国际比较及借鉴
- 2024年甘肃白银有色集团股份有限公司招聘真题
- 药房药品追溯管理制度
- 液氧应急预案管理制度
评论
0/150
提交评论