已阅读5页,还剩69页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
StructuredSupportVectorMachine,Hung-yiLee,StructuredLearning,WeneedamorepowerfulfunctionfInputandoutputarebothobjectswithstructuresObject:sequence,list,tree,boundingbox,Xisthespaceofonekindofobject,Yisthespaceofanotherkindofobject,UnifiedFramework,ThreeProblems,ExampleTask:ObjectDetection,Sourceofimage:/viewdoc/download?doi=95.6007&rep=rep1&type=pdfhttp:/www.vision.ee.ethz.ch/hpedemo/gallery.php,Keepinmindthatwhatyouwilllearntodaycanbeappliedtoothertasks.,ExampleTask,Problem1:Evaluation,F(x,y)islinear,=,Openquestion:WhatifF(x,y)isnotlinear?,Problem2:Inference,=argmax(,),(),=1.1,(),=8.2,(),=0.3,(),=10.1,(),=-1.5,(),=5.6,max,Problem2:Inference,ObjectDetectionBranchandBoundalgorithmSelectiveSearchSequenceLabelingViterbiAlgorithmThealgorithmscandependon,GeneticAlgorithmOpenquestion:Whathappensiftheinferenceisnotexact?,Problem3:Training,Trainingdata:,Principle,WeshouldfindF(x,y)suchthat,forall,Letsignoreproblems1and2andonlyfocusonproblem3today.,Outline,Outline,Assumption:Separable,Thereexistsaweightvector,StructuredPerceptron,Input:trainingdatasetOutput:weightvectorwAlgorithm:Initializew=0doForeachpairoftrainingexampleFindthelabelmaximizing,If,updatewuntilwisnotupdated,(problem2),Wearedone!,WarningofMath,Inseparablecase,toobtaina,youonlyhavetoupdateatmost2times,R:thelargestdistancebetween,and,:margin,Notrelatedtothespaceofy!,ProofofTermination,wisupdatedonceitseesamistake,(therelationofwkandwk-1),(Allincorrectlabelforanexample),(Alltrainingexamples),Assumethereexistsaweightvectorsuchthat,Assume=1withoutlossofgenerality,Remind:weareconsideringtheseparablecase,ProofofTermination,wisupdatedonceitseesamistake,(therelationofwkandwk-1),Analysis,(largerandlarger?),(Separable),ProofofTermination,Analysis,(largerandlarger?),(sowhat),wisupdatedonceitseesamistake,(therelationofwkandwk-1),=0,ProofofTermination,?,(mistake),AssumethedistancebetweenanytwofeaturevectorsissmallerthanR,ProofofTermination,EndofWarning,Inseparablecase,toobtaina,youonlyhavetoupdateatmost2times,R:thelargestdistancebetween,and,:margin,Notrelatedtothespaceofy!,Howtomaketrainingfast?,Margin:Isiteasytoseparableredpointsfromtheblueones,Normalization,Allfeaturetimes2,Largermargin,lessupdate,Thelargestdistancesbetweenfeatures,Outline,Non-separableCase,Whenthedataisnon-separable,someweightsarestillbetterthantheothers.,Undoubtedly,isbetterthan.,DefiningCostFunction,DefineacostCtoevaluatehowbadawis,andthenpickthewminimizingthecostC,=1,=max,Whatistheminimumvalue?,Otheralternatives?,(Stochastic)GradientDescent,(Stochastic)Gradientdescent:,Weonlyhavetoknowhowtocompute.,=1,=max,However,thereis“max”in.,Findwminimizingthecost,Whenwisdifferent,theycanbedifferent.,Spaceofw,max,=,=,=,(Stochastic)GradientDescent,Fort=1toT:,UpdatetheparametersTtimes,Randomlypickatrainingdata,=max,=,=,stochastic,Ifweset=1,thenwearedoingstructuredperceptron.,Locatetheregion,simple,Outline,Basedonwhatwehaveconsidered.,Treatallincorrectyequally,Therightcaseisbetter.,verybad!,acceptable,Consideringtheincorrectones,Closetocorrectbox,Differentfromcorrectbox,smaller,larger,Howtomeasurethedifference,DefiningErrorFunction,:differencebetweenand,=1,:areaofboundingboxy,(0),AnotherCostFunction,margin,margin,=max,+,GradientDescent,=max,=,max,+,Ohno!Problem2.1,=max,+,AnotherViewpoint,Minimizingthenewcostfunctionisminimizingtheupperboundoftheerrorsontrainingset,=1,=1,Proofthat,Itishard!,Becauseycanbeanykindofobjects,canbeanyfunction,Wewanttofindminimizing(errors),upperbound,servesasthesurrogateof,=argmax,AnotherViewpoint,=max,+,=argmax,+,=,+,max,+,0,=,Proofthat,MoreCostFunctions,=max,+,Marginrescaling:,Slackvariablerescaling:,=max,1+,Outline,Regularization,=1,=122+=1,Keeptheincorrectanswerfromamargindependingonerrors,wclosetozerocanminimizetheinfluenceofmismatch.,Trainingdataandtestingdatacanhavedifferentdistribution.,=max,+,Regularization:Findthewclosetozero,Regularization,=,=max,+,+,=1,WeightdecayasinDNN,=1,=122+=1,Outline,StructuredSVM,=max,+,+,=max,+,+,+,For:,Aretheyequivalent?,WewanttominimizeC,StructuredSVM,=max,+,Findminimizing,=122+=1,For:,For:,Slackvariable,Findw,1,minimizing,StructuredSVM,Ify=:,=0,=0,Itispossiblethatnowcanachievethis.,margin,margin,margin,StructuredSVM-Intuition,(lotsofinequalities),slackvariable,0,(0maketheconstraintsmorestrict),StructuredSVM-Intuition,(lotsofinequalities),1,1,2,2,Trainingdata:,1,1,2,(lotsofinequalities),(lotsofinequalities),1,2,2,10,20,For1,For2,StructuredSVM-Intuition,StructuredSVM,Toomanyconstraints,SolveitbythesolverinSVMpackage,QuadraticProgramming(QP)Problem,Outline,Sourceofimage:,CuttingPlaneAlgorithm,Parameterspace,ColoristhevalueofCwhichisgoingtobeminimized:,1,Solutionwithoutconstraints,Solutionwithconstraints,Imagecredit:YisongYue,=122+=1,CuttingPlaneAlgorithm,Parameterspace,1,Greenline:Removethisconstraintwillnotinfluencethesolution,Redlines:determinethesolution,Althoughtherearelotsofconstraints,mostofthemdonotinfluencethesolution.,:averysmallsetof,workingset,Imagecredit:YisongYue,Elementsinworkingsetisselectediteratively,CuttingPlaneAlgorithm,For:,Find,1minimizingC,=122+=1,Initialize1,Addelementsinto1,obtainsolutionw,SolveaQPproblem,Repeatedly,CuttingPlaneAlgorithm,Strategiesofaddingelementsintoworkingset,Noconstraintatall,SolvingQP,Initialize=,Thesolutionwisthebluepoint.,Imagecredit:YisongYue,CuttingPlaneAlgorithm,Strategiesofaddingelementsintoworkingset,Therearelotsofconstraintsisviolated,Findthemostviolatedone,Supposeitistheconstraintfromy,Extenttheworkingset,=,y,Imagecredit:YisongYue,CuttingPlaneAlgorithm,Strategiesofaddingelementsintoworkingset,Imagecredit:YisongYue,Findthemostviolatedone,Givenwandfromworkingsetsathand,whichconstraintisthemostviolatedone?,Constraint:,ViolateaConstraint:,DegreeofViolation,+,argmax,+,Themostviolatedone:,CuttingPlaneAlgorithm,1,1,2,2,Giventrainingdata:,WorkingSet1,2,Repeat,SolveaQPwithWorkingSet1,2,Find,1minimizing,122+=1,QP:,CuttingPlaneAlgorithm,Until1,2,doesntchangeanymore,Returnw,Foreachtrainingdata,:,Updateworkingset,=argmax,+,findthemostviolatedconstraints,1,1,2,2,Giventrainingdata:,WorkingSet1,2,Repeat,SolveaQPwithWorkingSet1,2,Trainingdata:,1,1,2,2,Find,1,2minimizing,122+=12,QP:,Thereisnoconstraint,Solution:=0,1=,2=,=0,Trainingdata:,1,1,2,2,1=,2=,=0,=1.0,=1.0,=1.0,=0.25,=0.90,=0.88,2=,1,1=argmax1,+01,2=argmax2,+02,Trainingdata:,1,1,2,2,Find,1,2minimizing,122+=12,QP:,1,2,2=,Solution:=1,=1,Trainingdata:,1,1,2,2,=-0.99,=-1.10,=1.01,=1.25,=0.97,=1.55,1,2=,=1,1=argmax1,+11,2=argmax2,+12,Trainingdata:,1,1,2,2,Find,1,2minimizing,122+=12,QP:,1,2,2=,2,1,Theprocessrepeatsiteratively,ConcludingRemarks,Multi-classSVM,Problem1:EvaluationIfthereareKclasses,thenwehaveKweightvectors1,2,=,:vectorrepresentationof,=,=,1,2,0,0,0,=,1,2,Multi-classSVM,Problem2:Inference,=,=max1,2,=max1,2,Thenumberofclassesareusuallysmall,sowecanjustenumeratethem.,Multi-classSVM,Problem3:Training,For:,For:,Findw,1,minimizing,=,=,Sometypesofmisclassificationsmaybeworsethanothers.,=,=1,=,=100,(definedasyourwish),ThereareonlyN(K-1)constraints.,BinarySVM,SetK=2,For:,1,2,=1,Ify=1:,121,Ify=2:,211,1,1,ConcludingRemarks,BeyondStructuredSVM,InvolvingDNNwhengenerating,DNN,StructuredSVM,Ref:HaoTang,Chao-hongMeng,Lin-shanLee,Aninitialattemptforphonemerecognitionusing
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高血压合并冠心病综合治疗策略
- 俄罗斯民间故事的文化特征
- 老年认知障碍患者生活护理
- 传统文化短视频的受众研究
- 汽车生产现场管理课件:制订员工激励考核方案
- 葡萄酒风味稳定性改进
- 工程合同外补充协议
- 床布料采购合同范本
- 治理污水池合同范本
- 游学委托协议书范本
- Module2 Unit2 How much cheese did you buy(教学设计)-2024-2025学年外研版(三起)英语五年级上册
- 2025国家电投集团河南公司招聘8人笔试历年备考题库附带答案详解试卷3套
- 采购经理个人述职报告
- 大单元整合 数与代数(比)六年级数学上册(北师大版)(含解析)
- 大模型在企业的应用实践
- 2025年河南省体育彩票管理中心公开招聘合同制聘用人员50人笔试考试备考题库及答案解析
- 2025年河北机关事业单位工人技能等级考试题库(含答案)
- 七上课外古诗词诵读《潼关》课件
- 地铁自动化检修员面试题及答案
- 数学新教材八年级上册解读课件(北师大版2024)
- 学全体教职工大会校长讲话:35 分钟会议把所有老师“点醒”到位
评论
0/150
提交评论