函数的极值与导数习题课_第1页
函数的极值与导数习题课_第2页
函数的极值与导数习题课_第3页
函数的极值与导数习题课_第4页
函数的极值与导数习题课_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

例1,已知f(x)ax5bx3c在x1处的极大值为4,极小值为0,试确定a、b、c的值分析本题的关键是理解“f(x)在x1处的极大值为4,极小值为0”的含义即x1是方程f(x)0的两个根且在根x1处f(x)取值左右异号,解析f(x)5ax43bx2x2(5ax23b)题意,f(x)0应有根x1,故5a3b,于是f(x)5ax2(x21)(1)当a0时,,点评紧扣导数与极值的关系对题目语言进行恰当合理的翻译、转化是解决这类问题的关键,例2求函数f(x)x33x22在(a1,a1)内的极值(a0)解析由f(x)x33x22得f(x)3x(x2),令f(x)0得x0或x2.当x变化时,f(x)、f(x)的变化情况如下表:,由此可得:当0a1时,f(x)在(a1,a1)内有极大值f(0)2,无极小值;当a1时,f(x)在(a1,a1)内无极值;当1a3时,f(x)在(a1,a1)内有极小值f(2)6,无极大值;当a3时,f(x)在(a1,a1)内无极值,综上得:当0a1时,f(x)有极大值2,无极小值;当1a3时,f(x)有极小值6,无极大值;当a1或a3时,f(x)无极值,点评判断函数极值点的注意事项:(1)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间(a,b)上的单调函数没有极值,(2)在讨论可导函数f(x)在定义域内的极值时,若方程f(x)0的实数根较多时,应注意使用表格,使极值点的确定一目了然(3)极值情况较复杂时,注意分类讨论,因此,函数在(1,)内的单调区间以及是否有极值均与a有关系,要视x与1的大小关系而定.,(1)当cos0时,判断函数f(x)是否有极值;(2)要使函数f(x)的极小值大于零,求参数的取值范围;(3)若对(2)中所求的取值范围内的任意参数,函数f(x)在区间(2a1,a)内都是增函数,求实数a的取值范围,分析f(x)是否有极值,需研究是否存在x0点,使f(x0)0且在x0左、右f(x)的符号相反;求参变量范围注

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论