




已阅读5页,还剩51页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、平面及其方程,二、直线及其方程,三、小结思考题,第四节平面与直线,如果一非零向量垂直于一平面,这向量就叫做该平面的法线向量,法线向量的特征:,垂直于平面内的任一向量,已知,设平面上的任一点为,必有,(normalvector),1、平面的点法式方程,一、平面及其方程,平面的点法式方程,平面上的点都满足上方程,不在平面上的点都不满足上方程,上述方程称为平面的方程,平面称为方程的图形,其中法向量,已知点,解,所求平面方程为,化简得,取法向量,化简得,所求平面方程为,解,由平面的点法式方程,平面的一般方程,法向量,2、平面的一般方程,平面一般方程的几种特殊情况:,平面通过坐标原点;,平面通过轴;,平面平行于轴;,平面平行于坐标面;,类似地可讨论情形.,类似地可讨论情形.,设平面为,由平面过原点知,所求平面方程为,解,设平面为,将三点坐标代入得,解,将,代入所设方程得,平面的截距式方程,(theinterceptform),设平面为,由所求平面与已知平面平行得,(向量平行的充要条件),解,化简得,令,所求平面方程为,解2:,由所求平面与已知平面平行得:,即,即D=6,由所求平面为,/,三、两平面的相互关系,相交程度的反映指标,两平面的夹角,定义,(通常取锐角),两平面法向量之间的夹角称为两平面的夹角.,两平面的夹角,按照两向量夹角余弦公式有,两平面夹角余弦公式,例6研究以下各组里两平面的位置关系:,解,两平面相交,夹角,两平面平行,两平面平行但不重合,两平面平行,两平面重合.,4、点到平面的距离,分析,点到平面距离公式,方向向量(directionvector)的定义,如果一非零向量平行于一条已知直线,这个向量称为这条直线的方向向量,1、直线的参数方程与对称式方程,二、直线及其方程,直线的参数方程,直线的对称式方程,方向向量的余弦称为直线的方向余弦.,解,所以交点为,所求直线方程,定义,空间直线可看成两平面的交线,空间直线的一般方程,2、直线的一般式方程,例8用对称式方程及参数方程表示直线,解,在直线上任取一点,取,解得,点坐标,因所求直线与两平面的法向量都垂直,取,对称式方程,参数方程,3、空间两直线的关系,其中,与共面,两直线的特殊位置关系判定:,/,直线,直线,例如,,解,设所求直线的方向向量为,根据题意知,取,所求直线的方程,直线,直线,两直线的方向向量的夹角称之.(锐角),两直线的夹角公式,解,先作一过点M且与已知直线垂直的平面,再求已知直线与该平面的交点N,令,M,L,代入平面方程得,交点,取所求直线的方向向量为,所求直线方程为,4、直线与平面的关系,(3)与相交于一点,(1)与平行或含于,定义,直线和它在平面上的投影直线的夹角称为直线与平面的夹角,(4)直线与平面的夹角,(1)投影直线可求吗?,考虑,法向量与直线的夹角易求吗?与所研究向量的关系是什么?,(2),直线,投影直线,两直线的夹角公式,直线与平面的夹角公式,解,为所求夹角,设直线由方程,5、过直线的平面束,平面的方程,(熟记平面的几种特殊位置的方程),两平面的关系,点到平面的距离公式,点法式方程.,一般方程.,截距式方程.,(注意两平面的位置特征),三、小结,空间两直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025房地产开发代理合同(含景观设计)
- 2025常州二手房过户税费筹划与税务筹划合同
- 海南省儋州市2025年上半年事业单位公开遴选试题含答案分析
- 海南省澄迈县2025年上半年公开招聘村务工作者试题含答案分析
- 2025版现代服务业用地抵押担保合作协议
- 2025版实验动物中心动物实验动物饲养合同
- 贵州省织金县2025年上半年公开招聘村务工作者试题含答案分析
- 贵州省荔波县2025年上半年公开招聘村务工作者试题含答案分析
- 2025版企业员工培训与进修资助服务合同
- 2025版原材料进出口采购代理合同
- crh5a型动车组四级检修修订改
- 纯净水生产项目可行性分析报告
- 监理内业资料整理要点
- GB/T 21652-2017铜及铜合金线材
- GB/T 12234-2019石油、天然气工业用螺柱连接阀盖的钢制闸阀
- 全套教学课件《公共艺术(音乐)》
- 高中数学《基于问题链的数学教学探索》课件
- (卓越绩效)质量奖申报材料
- 同创伟业投资分析报告(附358家被投企业介绍)
- 数学-四年级(上册)-人教版-《亿以上数的认识及读法》教学课件
- 政治经济学ppt课件汇总(完整版)
评论
0/150
提交评论