二项分布与几何分布_第1页
二项分布与几何分布_第2页
二项分布与几何分布_第3页
二项分布与几何分布_第4页
二项分布与几何分布_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

,二项分布与几何分布,我们称这样的随机变量服从二项分布,记作,其中n,p为参数,并记,如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事件发生次的次数是一个随机变量,它的取值为0,1,2,.n,那么在n次独立重复试验中这个事件发生k次概率,一。二项分布,于是得到随机变量的概率分布如下:,例1:1名学生每天骑自行车上学,从家到学校的途中有5个交通岗,假设他在交通岗遇到红灯的事件是独立的,并且概率都是1/3.(1)求这名学生在途中遇到红灯的次数的分布列.(2)求这名学生在途中至少遇到一次红灯的概率.,解:(1)B(5,1/3),的分布列为P(=k)=,k=0,1,2,3,4,5.,(2)所求的概率:P(1)=1-P(=0)=1-32/243=211/243.,例2.某厂生产电子元件,其产品的次品率为5%现从一批产品中任意地连续取出2件,写出其中次品数的概率分布,解:依题意,随机变量B(2,5%)所以,,因此,次品数的概率分布是,二.几何分布,在次独立重复试验中,某事件A第一次发生时所作的试验次数也是一个取值为正整数的随机变量。“=k”表示在第k次独立重复试验时事件A第一次发生。如果把第k次实验时事件A发生记为Ak,p(Ak)=p,那么,于是得到随机变量的概率分布如下:,(k=0,1,2,q=1-p.),称服从几何分布,并记g(k,p)=pqk-1,检验p1+p2+=1,例3、在一袋中装有一只红球和九只白球。每次从袋中任取一球取后放回,直到取得红球为止,求取球次数的分布列。,分析:袋中虽然只有10个球,由于每次任取一球,取后又放回,因此应注意以下几点:(1)一次取球两个结果:取红球A或取白球,且P(A)=0.1;(2)取球次数可能取1,2,;(3)由于取后放回。因此,各次取球相互独立。,返回,例7.某射手有5发子弹,射击一次命中的概率为0.9如果命中了就停止射击,否则一直射击到子弹用完,(1)求耗用子弹数的分布如果命中2次就停止射击,否则一直射击到子弹用完,求耗用子弹数的分布列,解:,的所有取值为:1、2、3、4、5,表示第一次就射中,它的概率为:,表示第一次没射中,第二次射中,,同理,,表示前四次都没射中,,返回,某射手有5发子弹,射击一次命中的概率为0.9如果命中了就停止射击,否则一直射击到子弹用完,求耗用子弹数的分布列如果命中2次就停止射击,否则一直射击到子弹用完,求耗用子弹数的分布列,解:,的所有取值为:2、3、4、5,表示前二次都射中,它的概率为:,表示前二次恰有一次射中,第三次射中,,表示前四次中恰有一次射中,或前四次全部没射中,同理,小结:本节学习的主要内容及学习目标要求:,1、理解离散型随机变量的分布列的意义,会求某些简单的离散型随机变量的分布列;2、掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单问题;3、理解二项分布和几何分布的概念。,求离散型随机变量的概

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论