


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线 几何语言: l OA,点A在O上 直线l是O的切线(切线判定定理)切线的性质定理圆的切线垂直于经过切点的半径 几何语言: OA是O的半径,直线l切O于点A l OA(切线性质定理) 推论1 经过圆心且垂直于切线的直径必经过切点 推论2 经过切点且垂直于切线的直线必经过圆心切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 几何语言: 直线PA、PB分别切O于A、B两点 PA=PB,APO=BPO(切线长定理)证明:连结OA、OB 直线PA、PB分别切O于A、B两点 OAAP、OBPB OAP=OBP=90 在OPA和OPB中: OAP=OBP OP=OP OA=OB=r OPAOPB(HL) PA=PB,APO=BPO弦切角概念顶点在圆上,一边和圆相交、另一边和圆相切的角叫做弦切角它是继圆心角、圆周角之后第三种与圆有关的角这种角必须满足三个条件: (1)顶点在圆上,即角的顶点是圆的一条切线的切点; (2)角的一边和圆相交,即角的一边是过切点的一条弦所在的射线; (3)角的另一边和圆相切,即角的另一边是切线上以切点为端点的一条射线。它们是判断一个角是否为弦切角的标准,三者缺一不可 (4)弦切角可以认为是圆周角的一个特例,即圆周角的一边绕顶点旋转到与圆相切时所成的角正因为如此,弦切角具有与圆周角类似的性质弦切角定理弦切角(即图中ACD)等于它所夹的弧(弧AC)对的圆周角等于所夹的弧的读数的一半等于1/2所夹的弧的圆心角 注,由于网上找得的图不是很完整,图中没有连结OC 几何语言:ACD所夹的是弧AC ACD=ABC=1/2COA=1/2弧AC的度数(弦切角定理) 推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 几何语言:1所夹的是弧MN ,2所夹的是PQ ,弧MN =弧PQ1=2 证明:作ADEC ADC=90 ACD+CAD=90 ED与O切于点C OCED OCD=OCA+ACD=90 OCA=CAD OC=OA=r OCA=OAC COA=180-OCA-OAC=180-2CAD 又ACD=90-CAD ACDC=1/2COA ACD=ABC=1/2COA=1/2弧AC的度数切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 登报遗失租赁合同范本
- 过期妊娠催产素引产护理查房
- 医疗保障贷款合同
- 服务保理合同范本
- 美团电车合同范本
- 兼职配音协议合同范本
- 公务员合同范本
- 光伏售后合同范本
- 地皮转让流转合同范本
- 养鸡棚租赁合同范本
- 风光储储能项目PCS舱、电池舱吊装方案
- 原发性骨质疏松症诊疗指南(2022版)第一部分
- 重庆医科大学附属第一医院改建PET-CT、PET-MR项目环评报告
- 2022水电站计算机监控系统上位机现场验收标准手册
- 政务服务大厅管理规范:安全与应急处置
- 食管癌病人护理查房
- 双重预防机制构建-隐患排查治理(中石化中原油田天然气厂)
- 五牌一图(完整版)
- 二年级下册音乐《每天》教案
- 音乐美学.课件
- 心肺复苏说课比赛课件模板(一等奖)
评论
0/150
提交评论