


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数中的恒成立、恰成立和能成立问题教学目标: 结合具体函数,讨论关于任意与存在性问题的一般解题方法过程与方法 通过研究具体函数及其图象,将任意与存在性问题转化为函数值域关系或最值关系问题:已知函数,函数,当时,对任意,是否存在, 成立.若呢?变式1:对任意,存在, 成立,求的取值范围. 的值域是的值域的子集即可.变式2:存在 ,使得成立,求的取值范围.的值域与的值域的交集非空.变式3:对任意,存在,使得成立,求的取值范围.小结: 对函数中的存在性与任意性问题:相等关系转化为函数值域之间的关系,不等关系转化为函数的最值大小.例1:(1)已知求实数的取值范围。(2)已知,对任意,的值域是,求实数的取值范围。分析:本题第(1)问是一个恒成立问题,由于,恒成立,则此问题等价于恒成立,又等价于时的最小值恒成立. 由于在 时为增函数,所以,于是,.第(2)问是一个恰成立问题,即当时,的值域恰为,与(1)不同的是,(1)是时,恒成立,因此允许在时,的取值为,-等等.而的值域为,则当时,只能取,而不能是其他. ,当时,由于,与其值域为矛盾,所以有. 注意到当时,函数都是上的增函数,因而也是上的增函数.于是在时的最小值为,令,即,得.小结:1、解恒成立题的基本思路是:若在D上恒成立,等价于在D上的最小值成立,若在D上恒成立,则等价于在D上的最大值成立. 2、解决恰成立问题的的基本思路是:若在D上恰成立,等价于在D上的最小值,若在D上恰成立,则等价于在D上的最大值.恰成立问题:若不等式在区间上恰成立, 则等价于不等式的解集为;怎么理解 若不等式在区间上恰成立, 则等价于不等式的解集为.例2:函数(1)定义域为区间,求实数的取值范围.,-1,2是其根。复习时该回顾(2)在区间上有意义,求实数的取值范围;分析:(1)由题意知不等式的解集为-1,2,即的解集为-1,2,则的两根为-1,2则或(2)由题意知,不等式在-1,2上恒成立即: 恒成立或时, 或 能成立问题(存在):若在区间上存在实数使不等式成立,则等价于在区间上;若在区间上存在实数使不等式成立,则等价于在区间上的.练习1.如已知不等式在实数集上的解集不是空集,求实数的取值范围_练习2. 已知两函数,k为实数。()对任意的,有成立,求实数k的取值范围;()对任意的,有成立,求实数k的取值范围;()对任意的,总存在,有成立,求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025中国法国合资经营合同范本
- 2025劳动合同范本修订版
- 2025环保综合服务承包合同书
- 印刷厂客户信息管理办法
- 巴彦淖尔事业单位笔试真题2025
- 机械厂研发项目管理制度
- 第15课 上中下结构(二)说课稿-2025-2026学年小学书法练习指导六年级上册人美版
- 化工产品销售合同
- 2024秋七年级历史下册 第三单元 统一多民族国家的巩固和社会的危机备课说课稿 新人教版
- 西藏自治区林芝市第二高级中学高中信息技术:1.1信息及其特征 教学设计
- 第一、二、三、四单元试卷-2024-2025学年统编版九年级历史上册
- 食堂家长开放日活动方案及流程
- 网络传播概论(第5版)课件 第三章 网络传播形式的流变
- 三级安全教育试题及答案(包含公司级、部门级、班组级)
- 【市质检】福州市2024-2025学年高三年级第一次质量检测 地理试卷(含答案)
- 四川蜀道铁路运营管理集团行测笔试题库
- JB T 5496-2015 振动筛制造技术条件
- HGT 4686-2014 液氨泄漏的处理处置方法
- 《答谢中书书》教学设计
- (正式版)HGT 22820-2024 化工安全仪表系统工程设计规范
- 愚公移山说课稿讲解课件
评论
0/150
提交评论