




已阅读5页,还剩34页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Input:Concepts,Attributes,Instances,2,ModuleOutline,TerminologyWhatsaconcept?Classification,association,clustering,numericpredictionWhatsinanexample?Relations,flatfiles,recursionWhatsinanattribute?Nominal,ordinal,interval,ratioPreparingtheinputARFF,attributes,missingvalues,gettingtoknowdata,witten&eibe,3,Terminology,Componentsoftheinput:Concepts:kindsofthingsthatcanbelearnedAim:intelligibleandoperationalconceptdescriptionInstances:theindividual,independentexamplesofaconceptNote:morecomplicatedformsofinputarepossibleAttributes:measuringaspectsofaninstanceWewillfocusonnominalandnumericones,witten&eibe,4,Whatsaconcept?,DataMiningTasks(Stylesoflearning):Classificationlearning:predictingadiscreteclassAssociationlearning:detectingassociationsbetweenfeaturesClustering:groupingsimilarinstancesintoclustersNumericprediction:predictinganumericquantityConcept:thingtobelearnedConceptdescription:outputoflearningscheme,witten&eibe,5,Classificationlearning,Exampleproblems:attritionprediction,usingDNAdatafordiagnosis,weatherdatatopredictplay/notplayClassificationlearningissupervisedSchemeisbeingprovidedwithactualoutcomeOutcomeiscalledtheclassoftheexampleSuccesscanbemeasuredonfreshdataforwhichclasslabelsareknown(testdata)Inpracticesuccessisoftenmeasuredsubjectively,6,Associationlearning,Examples:supermarketbasketanalysis-whatitemsareboughttogether(k+cereal,chips+salsa)Canbeappliedifnoclassisspecifiedandanykindofstructureisconsidered“interesting”Differencewithclassificationlearning:Canpredictanyattributesvalue,notjusttheclass,andmorethanoneattributesvalueatatimeHence:farmoreassociationrulesthanclassificationrulesThus:constraintsarenecessaryMinimumcoverageandminimumaccuracy,7,Clustering,Examples:customergroupingFindinggroupsofitemsthataresimilarClusteringisunsupervisedTheclassofanexampleisnotknownSuccessoftenmeasuredsubjectively,witten&eibe,8,Numericprediction,Classificationlearning,but“class”isnumericLearningissupervisedSchemeisbeingprovidedwithtargetvalueMeasuresuccessontestdata,witten&eibe,9,Whatsinanexample?,Instance:specifictypeofexampleThingtobeclassified,associated,orclusteredIndividual,independentexampleoftargetconceptCharacterizedbyapredeterminedsetofattributesInputtolearningscheme:setofinstances/datasetRepresentedasasinglerelation/flatfileRatherrestrictedformofinputNorelationshipsbetweenobjectsMostcommonforminpracticaldatamining,witten&eibe,10,Afamilytree,PeterM,PeggyF,=,StevenM,GrahamM,PamF,GraceF,RayM,=,IanM,PippaF,BrianM,=,AnnaF,NikkiF,witten&eibe,11,Familytreerepresentedasatable,witten&eibe,12,The“sister-of”relation,Closed-worldassumption,witten&eibe,13,Afullrepresentationinonetable,witten&eibe,14,Generatingaflatfile,Processofflatteningafileiscalled“denormalization”SeveralrelationsarejoinedtogethertomakeonePossiblewithanyfinitesetoffiniterelationsProblematic:relationshipswithoutpre-specifiednumberofobjectsExample:conceptofnuclear-familyDenormalizationmayproducespuriousregularitiesthatreflectstructureofdatabaseExample:“supplier”predicts“supplieraddress”,witten&eibe,15,*The“ancestor-of”relation,witten&eibe,16,*Recursion,Appropriatetechniquesareknownas“inductivelogicprogramming”(e.g.QuinlansFOIL)Problems:(a)noiseand(b)computationalcomplexity,Infiniterelationsrequirerecursion,witten&eibe,17,*Multi-instanceproblems,EachexampleconsistsofseveralinstancesE.g.predictingdrugactivityExamplesaremoleculesthatareactive/notactiveInstancesareconfirmationsofamoleculeMoleculeactive(examplepositive)catleastoneofitsconfirmations(instances)isactive(positive)Moleculenotactive(examplenegative)callofitsconfirmations(instances)arenotactive(negative)Problem:identifyingthe“truly”positiveinstances,witten&eibe,18,Whatsinanattribute?,Eachinstanceisdescribedbyafixedpredefinedsetoffeatures,its“attributes”But:numberofattributesmayvaryinpracticePossiblesolution:“irrelevantvalue”flagRelatedproblem:existenceofanattributemaydependofvalueofanotheronePossibleattributetypes(“levelsofmeasurement”):Nominal,ordinal,intervalandratio,witten&eibe,19,Nominalquantities,ValuesaredistinctsymbolsValuesthemselvesserveonlyaslabelsornamesNominalcomesfromtheLatinwordfornameExample:attribute“outlook”fromweatherdataValues:“sunny”,”overcast”,and“rainy”Norelationisimpliedamongnominalvalues(noorderingordistancemeasure)Onlyequalitytestscanbeperformed,witten&eibe,20,Ordinalquantities,ImposeorderonvaluesBut:nodistancebetweenvaluesdefinedExample:attribute“temperature”inweatherdataValues:“hot”“mild”“cool”Note:additionandsubtractiondontmakesenseExamplerule:temperature“sunny”doesnotmakesense,whileTemperature“cool”orHumidity70doesAdditionalusesofattributetype:checkforvalidvalues,dealwithmissing,etc.,26,Transformingordinaltoboolean,Simpletransformationallowsordinalattributewithnvaluestobecodedusingn1booleanattributesExample:attribute“temperature”Betterthancodingitasanominalattribute,Originaldata,Transformeddata,c,witten&eibe,27,Metadata,InformationaboutthedatathatencodesbackgroundknowledgeCanbeusedtorestrictsearchspaceExamples:Dimensionalconsiderations(i.e.expressionsmustbedimensionallycorrect)Circularorderings(e.g.degreesincompass)Partialorderings(e.g.generalization/specializationrelations),witten&eibe,28,Preparingtheinput,Problem:differentdatasources(e.g.salesdepartment,customerbillingdepartment,)Differences:stylesofrecordkeeping,conventions,timeperiods,dataaggregation,primarykeys,errorsDatamustbeassembled,integrated,cleanedup“Datawarehouse”:consistentpointofaccessDenormalizationisnottheonlyissueExternaldatamayberequired(“overlaydata”)Critical:typeandlevelofdataaggregation,witten&eibe,29,TheARFFformat,witten&eibe,30,AttributetypesinWeka,ARFFsupportsnumericandnominalattributesInterpretationdependsonlearningschemeNumericattributesareinterpretedasordinalscalesifless-thanandgreater-thanareusedratioscalesifdistancecalculationsareperformed(normalization/standardizationmayberequired)Instance-basedschemesdefinedistancebetweennominalvalues(0ifvaluesareequal,1otherwise)Integers:nominal,ordinal,orratioscale?,witten&eibe,31,Nominalvs.ordinal,Attribute“age”nominalAttribute“age”ordinal(e.g.“young”“pre-presbyopic”“presbyopic”),witten&eibe,32,Missingvalues,Frequentlyindicatedbyout-of-rangeentriesTypes:unknown,unrecorded,irrelevantReasons:malfunctioningequipmentchangesinexperimentaldesigncollationofdifferentdatasetsmeasurementnotpossibleMissingvaluemayhavesignificanceinitself(e.g.missingtestinamedicalexamination)Mostschemesassumethatisnotthecasec“missing”mayneedtobecodedasadditionalvalue,witten&eibe,33,Missingvalues-example,ValuemaybemissingbecauseitisunrecordedorbecauseitisinapplicableInmedicaldata,valueforPregnant?attributeforJaneismissing,whileforJoeorAnnashouldbeconsideredNotapplicableSomeprogramscaninfermissingvalues,HospitalCheck-inDatabase,34,Inaccuratevalues,Reason:datahasnotbeencollectedforminingitResult:errorsandomissionsthatdontaffectoriginalpurposeofdata(e.g.ageofcustomer)TypographicalerrorsinnominalattributesvaluesneedtobecheckedforconsistencyTypographicalandmeasurementerrorsinnumericattributesoutliersneedtobeidentifiedErrorsmaybedeliberate(e.g.wrongzipcodes)Otherproblems:duplicates,staledata,witten&eibe,35,Precision“Illusion”,Example:geneexpressionmaybereportedasX83=193.3742,butmeasurementerrormaybe+/-20.Actualvalueisin173,213range,soitisappropriatetoroundthedatato190.Dontassumethateveryreporteddigitissignific
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水平三跑《接力跑》教学设计08
- 2025年火电运行值班员中级面试实战演练与答案解析
- 电力基本知识培训课件教学
- 2025年医生求职面试技巧与模拟题集锦
- 电力业务知识培训课件
- 2025年特岗教师招聘面试实战模拟题集萃小学英语教育心理学等
- 2025年人力资源和社会保障局公务员招录考试指南
- 2025年售前技术支持工程师中级面试技巧与模拟题
- 电仪岗位安全知识培训课件
- 血液透析护理服务规范
- 2025年发展对象考试题库附含答案
- 2025年兵团基层两委正职定向考录公务员试题(附答案)
- 2025年新专长针灸考试题及答案
- 高三生物一轮复习课件微专题5电子传递链化学渗透假说及逆境胁迫
- DBJ50-T-306-2024 建设工程档案编制验收标准
- 2025四川雅安荥经县国润排水有限责任公司招聘5人笔试历年参考题库附带答案详解
- 公司解散清算的法律意见书、债权处理法律意见书
- 高级焊工考试题含答案
- 2022年高校教师资格证(高校教师职业道德)考试题库高分300题带解析答案(安徽省专用)
- 《退役军人保障法》知识考试题库(含各题型)
- 口腔科超声波洁牙知情同意书
评论
0/150
提交评论