




已阅读5页,还剩147页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
计划学时:2学时教学课型:理论课教学目的与要求:掌握一元总体统计推断的基本原理与方法教学重点:一元总体统计推断的基本原理与方法教学难点:一元总体统计推断的基本原理与方法教学方法、手段与媒介:根据教材用多媒体课件课堂讲授教学过程与内容:,第四章多元正态总体的统计推断,4.1一元情形的回顾,1、置信区间,就称随机区间(,)是的置信度为1-的置信区间,称为置信下限,称为置信上限。,使得对任何0FWilksLambda0.831939801.353200.2876PillaisTrace0.168060201.353200.2876Hotelling-LawleyTrace0.202010051.353200.2876RoysGreatestRoot0.202010051.353200.2876,prociml;sigma1=0.57586206900.3758620690-.1034482759-.1655172414,0.37586206900.5850574713-.0919540230-.1586206897,-.1034482759-.09195402300.43678160920.4137931034,-.1655172414-41379310340.4551724138;mu1=3.90000,3.96667,4.33333,4.40000;sigma2=0.4885057471-.01724137930.04022988510.0229885057,-.01724137930.43793103450.07241379310.1172413793,0.04022988510.07241379310.24022988510.2022988506,0.02298850570.11724137930.20229885060.2574712644;mu2=3.83333,4.10000,4.63333,4.53333;c=1-100,10-10,100-1;mu=(mu1+mu2)/2;a=c*mu;sigma=29#(sigma1+sigma2)/58;t2=60#t(a)*inv(c*sigma*t(c)*a;F=20/(3*22)*t2;printt2f;,4.6多个总体均值的比较检验(多元方差分析),欲检验,方法:方差分析,检验统计量威尔克斯(Wilks)统计量,例4.6.1为了研究销售方式对商品额的影响,选择四种商品(甲、乙、丙、丁)按三种不同的销售方式(I,II,III)进行销,这四种商品的销售额分别为x1,x2,x3,x4,其数据见表4.6.1.问这三种销售方式的平均销售额是否显著不同?(设这三种销售方式的销售额x1,x2,x3,x4均服从正态分布.),经计算,由附录4-3中(4-3.4)可得,查F分布表得,从而,在0.01的显著性水平下,拒绝原假设(p=0.004).,差异的进一步分析(用一元方差分析).,表4.6.1销售额数据,Dataex461;Inputgx1-x4;Cards;,1120603382101119802333301635126020316551429150113065403205169453501901466058520011466627325018754585200111077507200110760364200113061391200180454292701605044219018154260280113587507260157484002851755252026017665403250155424111702665445531028245403210265653122802405147728026754481293238504682102424535119021134039031028055520200276605071892943326028026051429190255403902952654848117725948442225212563312270212056416280270454683702626641622426960377280365334802603100344682953656341626531174846825031146339538035530546235364515073203110904422253606244024831106937726038878299360373633903203114554942403103544163103100332733123140613123453803628625031355446834531306932536036057273260;Procprint;Run;,procanovadata=ex461;classg;modelx1-x4=g;manovah=g;run;,prociml;x=12560338210,11980233330,6351260203,65514291506945350190,46605852008754585240,11077507270,107603642008045429270,6050442190,81542602805748400285,7552520260,7665403250,5542411170;Y=6654455310,8245403210,6565312280,4051477280,6754481293,3850468210,4245351190,11340390310,8055520200,7660507189,9433260280,6051429190,5540390295,6548481177,6948442225,12563312270,12056416280,7045468370,6266416224,6960377280;z=6533480260,10034468295,6563416265,11748468250,11463395380,5530546235,6451507320,11090442225,6062440248,11069377260,8878299360,7363390320,11455494240,10354416310,10033273312803628625013069325360,6057273260;i=t(201);x1=T(x)*i/20;y1=T(y)*i/20;z1=T(z)*i/20;s=(x1+y1+z1)/3;t=60*s*T(s);sstr=20*(x1*T(x1)+y1*T(y1)+z1*T(z1)-t;sst=(T(x)*x+T(y)*y+T(z)*z)-t;sse=sst-sstr;l=det(sse)/det(sst);f=(57-4+1)*(1-sqrt(l)/(4*sqrt(l);f1=sstr1,1*57/(sse1,1*2);f2=sstr2,2*57/(sse2,2*2);f3=sstr3,3*57/(sse3,3*2);f4=sstr4,4*57/(sse4,4*2);printx1y1z1ssstrsstsselff1f2f3f4;,prociml;n1=20;n2=20;n3=20;n=n1+n2+n3;k=3;p=4;x1=260754018,200723417,240874518,170653917,2701103924,2051303423,190692715,200464515,2501172120,2001072820,2251303611,2101252617,170643114,270763313,190603416,280812018,3101192515,27057318,250673114,2601353929;x2=3101223021,310603518,190402715,225653416,170653716,210823117,280673718,210383617,280653023,200764017,200763920,280942611,190603317,295553016,2701252421,2801203218,240623220,280692920,370703020,280403717;x3=320643917,260593711,360882826,2951003612,270653221,3801143621,240554210,260553420,2601102920,295733321,2401143818,3101033218,3301122111,3451272420,250622216,260592119,2251003430,3451203618,3601072523,2501173616;xx=x1/x2/x3;,n1阶单位均矩阵,ln=201;x10=(ln*x1)/n1;printx10;mm1=i(n1)-j(n1,n1,1)/n1;mm=i(n)-j(n,n,1)/n;a1=x1*mm1*x1;printa1;a2=x2*mm1*x2;printa2;a3=x3*mm1*x3;printa3;tt=xx*mm*xx;printtt;a=a1+a2+a3;lambda=det(a)/det(tt);f=(n-p-k+1)*(1-sqrt(lambda)/(p*sqrt(lambda);p0=1-probf(f,8,108);printap0;,产生20个1的行向量,产生x1的均值向量,产生n1行n1列全为1的矩阵,产生离差阵,dt=det(tt/(n-k);da1=det(a1/(n1-1);da2=det(a2/(n2-1);da3=det(a3/(n3-1);m5=(n-k)*log(dt)-19*(log(da1)+log(da2)+log(da3);b=(2*p*p+3*p-1)*(k+1)/(6*(p+3)*(n-k)-(p-k+2)/(n-k)*(p+3);df=p*(p+3)*(k-1)/2;kc=(1-b)*m5;printdtda1da2da3;printm5bdf;p0=1-probchi(kc,df);printkcp0;run;,h=130;t11=h*tt*t(h);a11=h*a*t(h);f1=(t11-a11)/(k-1)/(a11/(n-k);p1=1-probf(f1,2,57);Printf1p1;,4.7总体相关系数的推断,一、简单相关系数的推断,(1)欲检验,(2)欲检验,二、偏相关系数的检验,欲检验,欲检验:,三、复相关系数的推断,欲检验,为研究日、美两国在华投资企业对中国经营环境的评价是否存在差异,今从两国在华投资企业中各抽出10家,让其对中国的政治、经济、法律、文化等环境进行打分,评分结果如表3.2所示(表中序号1-10为美国在华投资企业的代号,11-20为日本在华投资企业的代号,数据来源:国务院发展研究中心APEC在华投资企业情况调查).,协方差矩阵的检验,其中,则,其中,令,或等价于,其中,例1,prociml;n1=20;n2=20;n3=20;n=n1+n2+n3;k=3;p=4;x1=260754018,200723417,240874518,170653917,2701103924,2051303423,190692715,200464515,2501172120,2001072820,2251303611,2101252617,170643114,270763313,190603416,280812018,3101192515,27057318,250673114,2601353929;x2=3101223021,310603518,190402715,225653416,170653716,210823117,280673718,210383617,280653023,200764017,200763920,280942611,190603317,295553016,2701252421,2801203218,240623220,280692920,370703020,280403717;x3=320643917,260593711,360882826,2951003612,270653221,3801143621,240554210,260553420,2601102920,295733321,2401143818,3101033218,3301122111,3451272420,250622216,260592119,2251003430,3451203618,3601072523,2501173616;xx=x1/x2/x3;,ln=201;x10=(ln*x1)/n1;printx10;mm1=i(n1)-j(n1,n1,1)/n1;mm=i(n)-j(n,n,1)/n;s1=x1*mm1*x1/(n1-1);s2=x2*mm1*x2/(n2-1);s3=x3*mm1*x3/(n3-1);tt=xx*mm*xx/(n-1);s=(s1+s2+s3)*(n1-1)/(n-3);ds1=det(s1);ds2=det(s2);ds3=det(s3);ds=det(s);d=(2*p*2+3*p-1)*(k+1)/(6*p+1)*(n-k);f=p*(p+1)*(k-1)/2;m=(n-k)*log(det(s)-(n1-1)*(log(det(s1)+log(det(s2)+log(det(s3);kc=(1-d)*m;p0=1-probchi(kc,df);prints1s2s3sfdmkc;,记,其中,对例1中的数据,判断三个组(即三个总体)的均值向量和协方差矩阵是否全相等(=0.05),prociml;n1=20;n2=20;n3=20;n=n1+n2+n3;k=3;p=4;x1=260754018,200723417,240874518,170653917,2701103924,2051303423,190692715,200464515,2501172120,2001072820,2251303611,2101252617,170643114,270763313,190603416,280812018,3101192515,27057318,250673114,2601353929;x2=3101223021,310603518,190402715,225653416,170653716,210823117,280673718,210383617,280653023,200764017,200763920,280942611,190603317,295553016,2701252421,2801203218,240623220,280692920,370703020,280403717;x3=320643917,260593711,360882826,2951003612,270653221,3801143621,240554210,260553420,2601102920,295733321,2401143818,3101033218,3301122111,3451272420,250622216,260592119,2251003430,3451203618,3601072523,2501173616;xx=x1/x2/x3;,ln=201;x10=(ln*x1)/n1;printx10;mm1=i(n1)-j(n1,n1,1)/n1;mm=i(n)-j(n,n,1)/n;s1=x1*mm1*x1/(n1-1);s2=x2*mm1*x2/(n2-1);s3=x3*mm1*x3/(n3-1);tt=xx*mm*xx;s=(s1+s2+s3)*(n1-1)/(n-3);ds1=det(s1);ds2=det(s2);ds3=det(s3);dt=det(tt/n-k);d=(2*p*2+3*p-1)*(k+1)/(6*p+1)*(n-k);f=p*(p+3)*(k-1)/2;b=(1/(n1-1)+1/(n2-1)+1/(n3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人才选拔面试评分表设计试题
- 2025年免征印花税的合同类型
- 建筑外立面保温隔热改造创新创业项目商业计划书
- 林业法律风险评估服务创新创业项目商业计划书
- 小麦人工智能辅助生产创新创业项目商业计划书
- 2025关于户外广告牌租赁合同的样本
- 2025民办幼儿园转让合同范本
- 2025正式标准合同范本
- 2025建筑用混凝土购销合同
- 2025年文化艺术类校外培训安全责任合同
- 辐射安全防护技术革新方案
- 2025年大学生人文知识竞赛题库及参考答案
- 高考集合考试题及答案
- 中秋团圆主题班会课件
- 潍坊市辅警考试题库2025
- 飞行服务站2025年无人机培训基地建设与发展报告
- 2025年福建农业行政执法资格考试(专业法律知识)历年参考题库含答案详解
- 新质生产力六大科创中心
- 医疗数据孤岛问题与跨平台安全共享策略-洞察及研究
- 2025年有机食品消费者购买行为与偏好研究报告
- 2025年迎中秋节庆国庆节主题班会课件
评论
0/150
提交评论