




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2017七年级下册数学第八章知识点汇总(苏教版)2017七年级下册数学第八章知识点汇总(苏教版) 二元一次方程组 1.判断一个方程是不是二元一次方程,一般要将方程化为一般形式后再根据定义判断。 2.二元一次方程的解:一个二元一次方程有无数个解,而每一个解都是一对数值。求二元一次方程的解的方法:若方程中的未知数为x,y,可任取x的一些值,相应的可算出y的值,这样,就会得到满足需要的数对。 3.二元一次方程组:两个二元一次方程合在一起,就组成了一个二元一次方程组。作为二元一次方程组的两个方程,不一定都含有两个未知数,可以其中一个是一元一次方程,另一个是二元一次方程。 4.二元一次方程组的解:使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。检验一对数值是不是二元一次方程组的解的方法是,将两个未知数分别代入方程组中的两个方程,如果都能满足这两个方程,那么它就是方程组的解。 解二元一次方程组 1.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。 归纳:基本思路:“消元”把“二元”变为“一元”。 2.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。 3.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。 4.教科书中没有的几种解法 (1)加减-代入混合使用的方法: 特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元。 (2)换元法 特点:两方程中都含有相同的代数式,换元后可简化方程也是主要原因。 (3)设参数法 二元一次方程组1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次方程,一般形式是ax+by=c(a0,b0)。 如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。二元一次方程组,则一般有一个解,有时没有解,有时有无数个解。 2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。 3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。 4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。 5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。 归纳:基本思路:“消元”把“二元”变为“一元”。 三元一次方程组的解法知识点 三元一次方程组的解法.解法的技巧. 重点难点分析: 1.三元一次方程的概念 三元一次方程就是含有三个未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1, 2a-3b+c=0等都是三元一次方程. 2.三元一次方程组的概念 一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组. 例如, 等都是三元一次方程组. 三元一次方程组的一般形式是: 3.三元一次方程组的解法 (1)解三元一次方程组的基本思想 解二元一次方程组的基本思想是消元,即把二元一次方程转化为一元一次方程求解,由此可以联想解三元一次方程组的基本思想也是消元,一般地,应利用代入法或加减法消去一个未知数,从而变三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数. (2)怎样解三元一次方程组? 解三元一次方程组例题 1.解方程组 法一:代入法 分析:仿照前面学过的代入法,将(2)变形后代入(1)、(3)中消元,再求解. 解:由(2),得 x=y+1. (4) 将(4)分别代入(1)、(3)得解这个方程组,得 把y=9代入(4),得x=10. 因此,方程组的解是 法二:加减法 解:(3)-(1),得 x-2y=-8 (4) 由(2),(4)组成方程组 解这个方程组,得把x=10,y=9代入(1)中,得因此,方程组的解是 法三:技巧法 分析:发现(1)+(2)所得的方程中x与z的系数与方程(3)中x与z的系数分别对应相等,因此可由(1)+(2)-(3)直接得到关于y的一元一次方程,求出y值后再代回,即可得到关于x、y的二元一次方程组 解:由(1)+(2)-(3),得把y=9代入(2),得 x=10. 把x=10,y=9代入(1),得因此,方程组的解是 注意: (1)解答完本题后,应提醒同学们不要忘记检验,但检验过程一般不写出. (2)从上述问题的一题多解,使我们体会到,灵活运用代入法或加减法消元,将有助于我们迅速准确 求解方程组. 2.解方程组 分析:在这个方程组中,方程(1)只含有两个未知数x、z,所以只要由(2)(3)消去y,就可以得到只含有x,z的二元一次方程组. 解:(2)3+(3),得11x+7z=29, (4)把方程(1),(4)组成方程组 解这个方程组,得,把x=-,z=5代入(2)得3(-)+2y+5=8,所以y= 因此,方程组的解是 3.解方程组 分析:用加减法解,应选择消去系数绝对值的最小公倍数最小的未知数. 解:(1)+(3),得 5x+5y=25.(4) (2)+(3)2,得 5x+7y=31.(5) 由(4)与(5)组成方程组 解这个方程组,得把x=2,y=3代入(1),得32+23+z=13, 所以因此,方程组的解是 4.解方程组 分析:题目中的y:x=3:2,即y= 法一:代入法 解:由(2)得x(4) 由(3)得z= (5) 将(4),(5)代入(1),得+y+y=111所以把y=45分别代入(4)、(5),得x=30,因此,方程组的解是法二:技巧法 分析:yx=32,即xy=23=1015,而yz=54=1512,故有xyz=101512.因此,可设x=10k,y=15k,z=12k.将它们一起代入(1)中求出k值,从而求出x、y、z的值. 解:由(2),得xy=23, 即xy=10由(3),得yz=54, 即yz=1512. 所以 xyz=101512. 设x=10k,y=15k,z=12k,代入(1)中得10k+15k+12k=111, 所以故x=30,y=45,因此,方程组的解是 5.解方程组 分析: 1) 观察原方程组,我们准备先消去哪一个未知数? 2) 为什么要先消去z?注意到三个方程中都含有三个未知数,而在方程(3)中z一项的系数是-1,所以未 知数z易消. 3) 怎样在(1)和(2)中消去z? 4) 解这个关于x、y的方程组,求x和y的值是多少? 5) 怎样去求z的值?能不能把x=5, y=0代入(3)中去求z? 解:(1)+(3)4 得17x+5y=85 (4) (3)3-(2) 得7x-y=35 (5) (4)、(5)组成方程组 解得 把x=5, y=0代入(3),得15-所以z=-3, 所以 总结:解三元一次方程组的一般步骤: 1.利用代入法或加减法,把方程组
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年管理学:人力资源管理师能力考核试题(附含答案)
- 摄影艺术与技法课件
- 摄影基本知识培训心得
- 软件技术基础试题及答案
- 2025终止合同通知书
- 2025企业汽车租赁合同范本
- 2025年农业用地流转合同签订方式
- 搭配的学问课件
- 2025年9月版用工合同(合作协议书)范本(可规避风险)
- 澳门入籍面试题研究报告:不同行业背景下的职业素养考察
- MA控台基本知识和技巧
- 三视图及尺寸标注课件
- 东芝空调用户使用手册
- BVI公司法全文(英文版)
- 住房公积金投诉申请书
- 众辰变频器说明书3400
- 《世说新语》乘船 完整版课件
- 施工现场安全检查记录表(周)以及详细记录
- 《财务管理》课程教学实施方案
- 煤矿地质基础知识课件
- 检验科生物安全风险评估报告
评论
0/150
提交评论