




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,数列通项公式的十种求法:(1)公式法(构造公式法)例1 已知数列满足,求数列的通项公式。解:两边除以,得,则,故数列是以为首项,以为公差的等差数列,由等差数列的通项公式,得,所以数列的通项公式为。评注:本题解题的关键是把递推关系式转化为,说明数列是等差数列,再直接利用等差数列的通项公式求出,进而求出数列的通项公式。(2)累加法例2 已知数列满足,求数列的通项公式。解:由得则所以数列的通项公式为。评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。变式:已知数列满足,求数列的通项公式。(3)累乘法例3已知数列满足,求数列的通项公式。解:因为,所以,则,故所以数列的通项公式为评注:本题解题的关键是把递推关系转化为,进而求出,即得数列的通项公式。变式:已知数列满足,求的通项公式。(4)待定系数法例4已知数列满足,求数列的通项公式。解:设将代入式,得,等式两边消去,得,两边除以,得代入式得由及式得,则,则数列是以为首项,以2为公比的等比数列,则,故。评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。变式:已知数列满足,求数列的通项公式。已知数列满足,求数列的通项公式。(5)对数变换法例5已知数列满足,求数列的通项公式。解:因为,所以。在式两边取常用对数得设将式代入式,得,两边消去并整理,得,则,故代入式,得 由及式,得,则,所以数列是以为首项,以5为公比的等比数列,则,因此则。评注:本题解题的关键是通过对数变换把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。(6)数学归纳法例6已知数列满足,求数列的通项公式。解:由及,得由此可猜测,往下用数学归纳法证明这个结论。(1)当时,所以等式成立。(2)假设当时等式成立,即,则当时,由此可知,当时等式也成立。根据(1),(2)可知,等式对任何都成立。评注:本题解题的关键是通过首项和递推关系式先求出数列的前n项,进而猜出数列的通项公式,最后再用数学归纳法加以证明。(7)换元法例7已知数列满足,求数列的通项公式。解:令,则故,代入得即因为,故则,即,可化为,所以是以为首项,以为公比的等比数列,因此,则,即,得。评注:本题解题的关键是通过将的换元为,使得所给递推关系式转化形式,从而可知数列为等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。(8)不动点法例8已知数列满足,求数列的通项公式。解:令,得,则是函数的两个不动点。因为。所以数列是以为首项,以为公比的等比数列,故,则。评注:本题解题的关键是先求出函数的不动点,即方程的两个根,进而可推出,从而可知数列为等比数列,再求出数列的通项公式,最后求出数列的通项公式。例9已知数列满足,求数列的通项公式。解:令,得,则是函数的不动点。因为,所以。评注:本题解题的关键是通过将的换元为,使得所给递推关系式转化形式,从而可知数列为等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。课后习题:1数列的一个通项公式是( )A、 B、 C、 D、2已知等差数列的通项公式为 , 则它的公差为( ) A 、2 B 、3 C、 D、3在等比数列中, 则( ) A、 B、 C、 D、4若等比数列的前项和为,且,则 5已知数列通项公式,则该数列的最小的一个数是 6在数列an中,且,则数列的前99项和等于 7已知是等差数列,其中,公差。(1)求数列的通项公式;(2)数列从哪一项开始小于0?(3)求数列前项和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 茶饮咖啡融合新业态2025年市场消费者需求与偏好研究报告
- 水的科学说课课件
- 农业生产与遥感技术应用服务合同
- 推拿治疗培训课件模板
- 数字孪生在城市公共安全事件应急处理中的应用策略研究报告
- 培训课件内容评估报告
- 养护工安全知识培训课件
- 夏日的清凉夏天的海滩写景(8篇)
- 廉颇蔺相如列传:古代人格精神教案
- 免疫细胞的分类
- 2024下半年天翔外科手术器械ESG行动报告:供应链中的ESG责任与机遇
- 2025年生物化学与分子生物学综合题答案及解析
- 药品追溯试题及答案
- 辅警综合知识和能力素质考试试题(含答案)
- 网络文明培训课件
- DB65 T8038-2025 好住房建设技术标准
- 2025年理赔专业技术职务任职资格考试(理赔员·车险理赔)历年参考题库含答案详解(5套)
- 压力表课件教学课件
- 景区管理办法条例
- 马工程中华人民共和国史(第二版)课件 第二章 社会主义建设道路的艰辛探索和曲折发展1
- 粉末冶金制品制造工技能测试题库及答案
评论
0/150
提交评论