


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
极化恒等式在向量问题中的应用专题阅读以下材料:M图1 (1) (2)(1)(2)两式相加得:结论:平行四边形对角线的平方和等于两条邻边平方和的两倍.思考1:如果将上面(1)(2)两式相减,能得到什么结论呢? 极化恒等式对于上述恒等式,用向量运算显然容易证明。那么基于上面的引例,你觉得极化恒等式的几何意义是什么?几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的.即:(平行四边形模式)思考:在图1的三角形ABD中(M为BD的中点),此恒等式如何表示呢?因为,所以(三角形模式)ABCM例1.(2012年浙江文15)在中,是的中点,则_ .解:因为是的中点,由极化恒等式得:=9-= -16【小结】在运用极化恒等式的三角形模式时,关键在于取第三边的中点,找到三角形的中线,再写出极化恒等式。目标检测解:取AB的中点D,连结CD,因为三角形ABC为正三角形,所以O为三角形ABC的重心,O在CD上,且,所以,(也可用正弦定理求AB)又由极化恒等式得:因为P在圆O上,所以当P在点C处时,当P在CO的延长线与圆O的交点处时,所以【小结】涉及数量积的范围或最值时,可以利用极化恒等式将多变量转变为单变量,再用数形结合等方法求出单变量的范围、最值即可。目标检测例3.(2013浙江理7)在中,是边上一定点,满足,且对于边上任一点,恒有。则( )A. B. C. D. 目标检测课后检测1.在中,若,在线段上运动,的最小值为 2.已知是圆的直径,长为2,是圆上异于的一点,是圆所在平面上任意一点,则的最小值为( )A. B. C. D. 3在中,若是所在平面内一点,且,则的最大值为 4 若点和点分别是双曲线的中心和左焦点,点为双曲线右支上任意一点则的取值范围是 .5在,已知点是内一点,则的最小值是 .6.已知是单位圆上的两点,为圆心,且是圆的一条直径,点在圆内,且满足,则的取值范围是( )A B C D7. 正边长等于,点在其外接圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025宁夏德润农业发展投资集团有限公司招聘补充备考考试题库附答案解析
- 外墙改造维护方案范本
- 多层外墙保温板施工方案
- 2025呼伦贝尔额尔古纳市蒙源旅游文化有限公司招聘136人考前自测高频考点模拟试题及答案详解(必刷)
- 2025年抗菌药物合理使用培训试题(中级)附答案
- 2025年监理工程师继续教育试题附答案
- 2025杭州市钱塘区教育局所属事业单位在职教师直接考核招聘37人模拟试卷及答案详解(夺冠系列)
- 基于大数据的城市预测分析-洞察及研究
- 政策对体育产业影响分析-洞察及研究
- 个性化资源供给研究-洞察及研究
- 创新方法大赛理论知识考核试题题库及答案
- 医防融合知识讲座
- 培养幼儿的语言能力
- 《认识几种常见的岩石》说课稿、教案和教学设计
- 黑布林英语阅读初一年级16《柳林风声》译文和答案
- 广东省监理从业人员网络继续教育平台题库
- YY/T 1268-2023环氧乙烷灭菌的产品追加和过程等效
- 平地机操作规程
- HY/T 0302-2021沸石离子筛法海水提钾工程设计规范
- GB/T 710-2008优质碳素结构钢热轧薄钢板和钢带
- GB/T 18591-2001焊接预热温度、道间温度及预热维持温度的测量指南
评论
0/150
提交评论