已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
FUSIONOFDAUBECHIESWAVELETCOEFFICIENTSFORHUMANFACERECOGNITIONMRINALKANTIBHOWMIK1,DEBOTOSHBHATTACHARJEE2,MITANASIPURI2,DIPAKKUMARBASU2,ANDMAHANTAPASKUNDU21DEPARTMENTOFCOMPUTERSCIENCEANDENGINEERING,TRIPURAUNIVERSITYSURYAMANINAGAR799130,TRIPURA,INDIAEMAILMKB_CSEYAHOOCOIN2DEPARTMENTOFCOMPUTERSCIENCEANDENGINEERING,JADAVPURUNIVERSITYKOLKATA700032,INDIAAICTEEMERITUSFELLOWEMAILDEBOTOSHINDIATIMESCOM,MITANASIPURI,DIPAKKBASUGMAILCOM,MKUNDUCSEJDVUACINABSTRACTINTHISPAPERFUSIONOFVISUALANDTHERMALIMAGESINWAVELETTRANSFORMEDDOMAINHASBEENPRESENTEDHERE,DAUBECHIESWAVELETTRANSFORM,CALLEDASD2,COEFFICIENTSFROMVISUALANDCORRESPONDINGCOEFFICIENTSCOMPUTEDINTHESAMEMANNERFROMTHERMALIMAGESARECOMBINEDTOGETFUSEDCOEFFICIENTSAFTERDECOMPOSITIONUPTOFIFTHLEVELLEVEL5FUSIONOFCOEFFICIENTSISDONEINVERSEDAUBECHIESWAVELETTRANSFORMOFTHOSECOEFFICIENTSGIVESUSFUSEDFACEIMAGESTHEMAINADVANTAGEOFUSINGWAVELETTRANSFORMISTHATITISWELLSUITEDTOMANAGEDIFFERENTIMAGERESOLUTIONANDALLOWSTHEIMAGEDECOMPOSITIONINDIFFERENTKINDSOFCOEFFICIENTS,WHILEPRESERVINGTHEIMAGEINFORMATIONFUSEDIMAGESTHUSFOUNDAREPASSEDTHROUGHPRINCIPALCOMPONENTANALYSISPCAFORREDUCTIONOFDIMENSIONSANDTHENTHOSEREDUCEDFUSEDIMAGESARECLASSIFIEDUSINGAMULTILAYERPERCEPTRONFOREXPERIMENTSIRISTHERMAL/VISUALFACEDATABASEWASUSEDEXPERIMENTALRESULTSSHOWTHATTHEPERFORMANCEOFTHEAPPROACHPRESENTEDHEREACHIEVESMAXIMUMSUCCESSRATEOF100INMANYCASESINDEXTERMSTHERMALIMAGE,DAUBECHIESWAVELETTRANSFORM,FUSION,PRINCIPALCOMPONENTANALYSISPCA,MULTILAYERPERCEPTRON,CLASSIFICATIONIINTRODUCTIONMANYMETHODSHAVEBEENPROPOSEDFORFACERECOGNITIONFUSIONOFIMAGESEXPLOITSSYNERGISTICINTEGRATIONOFIMAGESOBTAINEDFROMMULTIPLESENSORSANDBYTHATITCANGATHERDATAINDIFFERENTFORMSLIKEAPPEARANCEANDANATOMICALINFORMATIONOFTHEFACE,WHICHENRICHESTHESYSTEMINIMPROVINGRECOGNITIONACCURACY9ASAMATTEROFFACTFUSIONOFIMAGESHASALREADYESTABLISHEDITSIMPORTANCEINCASEOFIMAGEANALYSIS,RECOGNITION,ANDCLASSIFICATIONFORINSTANCE,AGLIKAGYAOUROVAETAL10TRIEDTOIMPLEMENTEDPIXELBASEDFUSIONSCHEMEINTHEWAVELETDOMAIN,ANDFEATUREBASEDFUSIONINTHEEIGENSPACEDOMAINALTHOUGHTHEIRFUSIONAPPROACHWASNOTABLETOFULLYDISCOUNTILLUMINATIONEFFECTSPRESENTINTHEVISIBLEIMAGESBUTTHEYSHOWEDSUBSTANTIALIMPROVEMENTSINOVERALLRECOGNITIONPERFORMANCETHEYALSOINDICATEDTHATIRBASEDRECOGNITIONPERFORMANCEDEGRADESSERIOUSLYWHENEYEGLASSESAREPRESENTINTHEPROBEIMAGEBUTNOTINTHEGALLERYIMAGEANDVICEVERSAONTHEOTHERHANDFORTHEIMPROVEMENTOFTHEPERFORMANCEOFFACERECOGNITIONWHENFACEIMAGESAREOCCLUDEDBYWEARINGEYEGLASSES,JEONGSEONPARKETAL11FIRSTDETECTTHEREGIONSOCCLUDEDBYTHEGLASSESANDGENERATEANATURALLOOKINGFACIALIMAGEWITHOUTGLASSESBYRECURSIVEERRORCOMPENSATIONUSINGPCARECONSTRUCTIONTHEYPROPOSEDANEWGLASSESREMOVALMETHODBASEDONRECURSIVEERRORCOMPENSATIONUSINGPCARECONSTRUCTIONGEORGEBEBISETAL12INVESTIGATEDTHATTWODIFFERENTFUSIONSCHEMESLIKEFIRSTONEISPIXELBASEDANDOPERATESINTHEWAVELETDOMAINUSINGHAARTRANSFORMS,WHILETHESECONDONEISFEATUREBASEDANDOPERATESINTHEEIGENSPACEDOMAININBOTHCASES,THEYEMPLOYASIMPLEANDGENERALFRAMEWORKBASEDONGENETICALGORITHMSGASTOFINDANOPTIMUMFUSIONSTRATEGYAMITARANETAL13DEMONSTRATEDTHESPECTRALBANDINVARIANTWAVEMACHFILTERSWHICHAREDESIGNEDUSINGIMAGESOFCCD/IRCAMERAFUSEDBYDAUBECHIESWAVELETTRANSFORMANDIMPLEMENTEDINHYBRIDDIGITALOPTICALCORRELATORARCHITECTURETOIDENTIFYMULTIPLETARGETSINASCENETHEYHAVEFUSIONOFINFRAREDANDCCDCAMERABECAUSETHEPERFORMANCEOFCCDCAMERAISBETTERUNDERGOODILLUMINATIONCONDITIONSWHEREASIRCAMERAGIVESABETTEROUTPUTUNDERPOORILLUMINATIONORINTHENIGHTCONDITIONSALSOTHEAUTHORSIN14PROPOSEDDATAFUSIONOFVISUALANDTHERMALIMAGESUSINGGABORFILTERINGTECHNIQUEWHICHEXTRACTSFACIALFEATURES,AREUSEDASAFACERECOGNITIONTECHNIQUEITHASBEENFOUNDTHATBYUSINGTHEPROPOSEDFUSIONTECHNIQUEGABORFILTERCANRECOGNIZEFACEEVENWITHVARIABLEEXPRESSIONSANDLIGHTINTENSITIES,BUTNOTINEXTREMECONDITIONDIEGOASOCOLINSKYANDANDREASELINGER15CONSIDEREDOUTDOORANDINDOORIMAGINGCONDITIONSFORTHERMALIMAGING,ANDONEOFFEWTODOSOEVENFORVISIBLEFACERECOGNITIONITISCLEARFROMTHEIREXPERIMENTSTHATFACERECOGNITIONOUTDOORSWITHVISIBLEIMAGERYISFARLESSACCURATETHANWHENPERFORMEDUNDERFAIRLYCONTROLLEDINDOORCONDITIONSFOROUTDOORUSE,THERMALIMAGINGPROVIDESUSWITHACONSIDERABLEPERFORMANCEBOOSTTHERMALRECOGNITIONPERFORMANCESUFFERSAMODERATEDECAYWHENPERFORMEDOUTSIDEAGAINSTANINDOORENROLLMENTSET,PROBABLYASARESULTOFENVIRONMENTALCHANGESJINGUHEOETAL16DESCRIBESCOMPARISONRESULTSONTHREEFUSIONBASEDFACERECOGNITIONTECHNIQUESLIKEDATAFUSIONOFVISUALANDTHERMALIMAGESDF,DECISIONFUSIONWITHHIGHESTMATCHINGSCOREFH,ANDDECISIONFUSIONWITHAVERAGEMATCHINGSCOREFAANDSHOWEDTHATFUSIONBASEDFACERECOGNITIONTECHNIQUESOUTPERFORMEDINDIVIDUALVISUALANDTHERMALFACERECOGNIZERSUNDERILLUMINATIONVARIATIONSANDFACIALEXPRESSIONSFROMTHEMDECISIONFUSIONWITHAVERAGEMATCHINGSCORECONSISTENTLYDEMONSTRATEDSUPERIORRECOGNITIONACCURACIESASPERTHEIRRESULTSIOANNISPAVLIDISANDPETERSYMOSEK17DEMONSTRATEDATHEORETICALANDEXPERIMENTALARGUMENTTHATADUALBANDUPPERANDLOWERBANDFUSIONSYSTEMINTHENEARINFRAREDCANSEGMENTHUMANFACESMUCHMOREACCURATELYTHANTRADITIONALVISIBLEBANDDISGUISEFACEDETECTIONSYSTEMSDIEGOASOCOLINSKYANDANDREASELINGER18PERFORMEDACLEARANALYSISTHATLWIRIMAGERYOFHUMANFACESISNOTONLYAVALIDBIOMETRIC,BUTALMOSTSURELYASUPERIORONETOCOMPARABLEVISIBLEIMAGERYXINCHEN,PATRICKJFLYNNANDKEVINWBOWYER19SHOWEDTHATTHECOMBINATIONOFIRPLUSVISIBLECANOUTPERFORMEITHERIRORVISIBLEALONETHEYFINDACOMBINATIONMETHODTHATCONSIDERSTHEDISTANCEVALUESPERFORMSBETTERTHANONETHATONLYCONSIDERSRANKSCHRISTOPHERKEVELANDETAL20INTRODUCEDAMETHODOLOGYFORTRACKINGHUMANFACESINCALIBRATEDTHERMALINFRAREDIMAGERYOFLWIRANDMWIRINDOORIMAGESEQUENCESHKEKENELANDBSANKUR7PROPOSEDMULTIRESOLUTIONANALYSISONSUBSPACEANALYSISDOMAINLIKEPCAANDICAINTHISWORK,ATECHNIQUEFORHUMANFACERECOGNITIONBASEDONFUSIONINWAVELETTRANSFORMEDDOMAINISPROPOSEDANDDISCUSSEDSUBSEQUENTLYIISYSTEMOVERVIEWTHEBLOCKDIAGRAMOFTHESYSTEMISGIVENINFIG1ALLTHEPROCESSINGSTEPSUSEDINTHISPAPERARESHOWNINTHEBLOCKDIAGRAMINTHEFIRSTSTEP,DECOMPOSITIONOFBOTHTHETHERMALANDVISUALIMAGESUPTOLEVELFIVEHASBEENDONEUSINGWAVELETTHENFUSEDIMAGEISGENERATEDFROMBOTHTHEDECOMPOSEDIMAGESTHESETRANSFORMEDIMAGESSEPARATEDINTOTWOGROUPSNAMELYTRAININGSETANDTESTINGSETTHEEIGENSPACEISNAMEDASFUSEDEIGENSPACESONCETHISPROJECTIONISDONE,THENEXTSTEPISTOUSEACLASSIFIERTOCLASSIFYTHEMAMULTILAYERPERCEPTRONHASBEENUSEDFORTHISPURPOSEAIMAGEDECOMPOSITIONWAVELETTRANSFORMSAREMULTIRESOLUTIONIMAGEDECOMPOSITIONTOOLTHATPROVIDEAVARIETYOFCHANNELSREPRESENTINGTHEIMAGEFEATUREBYDIFFERENTFREQUENCYSUBBANDSATMULTISCALEITISAFAMOUSTECHNIQUEINANALYZINGSIGNALSWHENDECOMPOSITIONISPERFORMED,THEAPPROXIMATIONANDDETAILCOMPONENTCANBESEPARATED1THEDAUBECHIESWAVELETDB2DECOMPOSEDUPTOFIVELEVELSHASBEENUSEDHEREFORIMAGEFUSIONTHESEWAVELETSAREUSEDHEREBECAUSETHEYAREREALANDCONTINUOUSINNATUREANDHAVELEASTROOTMEANSQUARERMSERRORCOMPAREDTOOTHERWAVELETS56FUSEDWAVELETCOEFFICIENTMAPSCLASSESRECOGNITIONRESULTCLASSIFICATIONMULTILAYERPERCEPTRONNEURALNETWORKDIMENSIONREDUCTIONDECISIONFUSIONBYAVERAGINGWAVELETCOEFFICIENTUPTOLEVEL5WAVELETCOEFFICIENTUPTOLEVEL5VISUALIMAGETHERMALIMAGEIDWTDWTDWTPCARECONSTRUCTEDFUSEDIMAGEFIGURE1BLOCKDIAGRAMOFTHESYSTEMPRESENTEDHEREDAUBECHIESWAVELETSAREAFAMILYOFORTHOGONALWAVELETSDEFININGADISCRETEWAVELETTRANSFORMANDCHARACTERIZEDBYAMAXIMALNUMBEROFVANISHINGMOMENTSFORSOMEGIVENSUPPORTTHISKINDOF2DDWTAIMSTODECOMPOSETHEIMAGEINTOAPPROXIMATIONCOEFFICIENTSCAANDDETAILEDCOEFFICIENTCH,CVANDCDHORIZONTAL,VERTICALANDDIAGONALOBTAINEDBYWAVELETDECOMPOSITIONOFTHEINPUTIMAGEXTHEFIRSTPARTOFFIG1SHOWINGAFTERDECOMPOSITIONOFTWOIMAGESCA,CH,CV,CDDWT2X,WNAME1CA,CH,CV,CDDWT2X,LO_D,HI_D2EQUATION1,WNAMEISTHENAMEOFTHEWAVELETUSEDFORDECOMPOSITIONEQUATION2LO_DDECOMPOSITIONLOWPASSFILTERANDHI_DDECOMPOSITIONHIGHPASSFILTERWAVELETDECOMPOSITIONFILTERSTHISKINDOFTWODIMENSIONALDWTLEADSTOADECOMPOSITIONOFAPPROXIMATIONCOEFFICIENTSATLEVELJINFOURCOMPONENTSTHEAPPROXIMATIONATLEVELJ1,ANDTHEDETAILSINTHREEORIENTATIONSHORIZONTAL,VERTICAL,ANDDIAGONALTHEFIG2DESCRIBESTHEALGORITHMICBASICDECOMPOSITIONSTEPSFORIMAGEWHERE,ABLOCKWITHADOWNARROWINDICATESDOWNSAMPLINGOFCOLUMNSANDROWSANDCA,CH,CVANDCDARETHECOEFFICIENTVECTORS234BIMAGERECONSTRUCTIONTHEMORETHEDECOMPOSITIONSCHEMEISBEINGREPEATED,THEMORETHEAPPROXIMATIONIMAGECONCENTRATESINTHELOWFREQUENCYENERGYTOGETRIDOFTHEILLUMINATIONEFFECTSTHATMAYINFLUENCETHERECOGNITIONRATE,THECOEFFICIENTSINWAVELETAPPROXIMATIONSUBBANDISSETTOZEROCONSEQUENTLYTHERECONSTRUCTIONPROCESSISPERFORMEDUSINGINVERSEOFDWTIDWTFINALLYTHERECONSTRUCTTEDIMAGEISUSEDASTHEINPUTTOPCAFORRECOGNITIONXIDWT2CA,CH,CV,CD,WNAME3XIDWT2CA,CH,CV,CD,LO_R,HI_R4IDWTUSESTHEWAVELETWNAMETOCOMPUTETHESINGLELEVELRECONSTRUCTIONOFANIMAGEX,BASEDONAPPROXIMATIONMATRIXCAANDDETAILEDMATRICESCH,CVANDCDHORIZONTAL,VERTICALANDDIAGONALRESPECTIVELYBYTHEEQUATIONNO4,WECANRECONSTRUCTTHEIMAGEUSINGFILTERSLO_RRECONSTRUCTLOWPASSANDHI_RRECONSTRUCTHIGHPASSINTHEFIG3WEHAVESHOWNTHEALGORITHMICBASICRECONSTRUCTIONSTEPSFORANIMAGECPRINCIPALCOMPONENTANALYSISPRINCIPALCOMPONENTANALYSISPCAISBASEDONTHESECONDORDERSTATISTICSOFTHEINPUTIMAGE,WHICHTRIESTOATTAINANOPTIMALREPRESENTATIONTHATMINIMIZESTHERECONSTRUCTIONERRORINALEASTSQUARESSENSEEIGENVECTORSOFTHECOVARIANCEMATRIXOFTHEFACEIMAGESCONSTITUTETHEEIGENFACESTHEDIMENSIONALITYOFTHEFACEFEATURESPACEISREDUCEDBYSELECTINGONLYTHEEIGENVECTORSPOSSESSINGSIGNIFICANTLYLARGEEIGENVALUESONCETHENEWFACESPACEISCONSTRUCTED,WHENATESTIMAGEARRIVES,ITISPROJECTEDONTOTHISFACESPACETOYIELDTHEFEATUREVECTORTHEREPRESENTATIONCOEFFICIENTSINTHECONSTRUCTEDFACESPACETHECLASSIFIERDECIDESFORTHEIDENTITYOFTHEINDIVIDUAL,ACCORDINGTOASIMILARITYSCOREBETWEENTHETESTIMAGESFEATUREVECTORANDTHEPCAFEATUREVECTORSOFTHEINDIVIDUALSINTHEDATABASE723DANNUSINGBACKPROPAGATIONWITHMOMENTUMNEURALNETWORKS,WITHTHEIRREMARKABLEABILITYTODERIVEMEANINGFROMCOMPLICATEDORIMPRECISEDATA,CANBEUSEDTOEXTRACTPATTERNSANDDETECTTRENDSTHATARETOOCOMPLEXTOBENOTICEDBYEITHERHUMANSOROTHERCOMPUTERTECHNIQUESATRAINEDNEURALNETWORKCANBETHOUGHTOFASAN“EXPERT”INTHECATEGORYOFINFORMATIONITHASBEENGIVENTOANALYZETHEBACKPROPAGATIONLEARNINGALGORITHMISONEOFTHEMOSTHISTORICALDEVELOPMENTSINNEURALNETWORKSITHASREAWAKENEDTHESCIENTIFICANDENGINEERINGCOMMUNITYTOTHEMODELINGANDPROCESSINGOFMANYQUANTITATIVEPHENOMENAUSINGNEURALNETWORKSTHISLEARNINGALGORITHMISAPPLIEDTOMULTILAYERFEEDFORWARDNETWORKSCONSISTINGOFPROCESSINGELEMENTSWITHCONTINUOUSDIFFERENTIABLEACTIVATIONFUNCTIONSSUCHNETWORKSASSOCIATEDWITHTHEBACKPROPAGATIONLEARNINGALGORITHMAREALSOCALLEDBACKPROPAGATIONNETWORKS82122232425IIIEXPERIMENTSRESULTSANDDISCUSSIONTHISWORKHASBEENSIMULATEDUSINGMATLAB7INAMACHINEOFTHECONFIGURATION213GHZINTELXEONQUADCOREPROCESSORAND1638400MBOFPHYSICALMEMORYWEANALYZETHEPERFORMANCEOFOURALGORITHMUSINGTHEIRISTHERMAL/VISUALFACEDATABASEAIRISTHERMAL/VISUALFACEDATABASEINTHISDATABASE,ALLTHETHERMALANDVISIBLEUNREGISTEREDFACEIMAGESARETAKENUNDERVARIABLEILLUMINATIONS,EXPRESSIONS,ANDPOSESTHEACTUALSIZEOFTHEIMAGESIS320X240PIXELSFORBOTHVISUALANDTHERMAL176250IMAGESPERPERSON,11IMAGESPERROTATIONPOSESFOREACHEXPRESSIONANDEACHILLUMINATIONTOTAL30CLASSESAREPRESENTINTHATDATABASEANDTHESIZEOFTHEDATABASEIS183GB28SOMEFUSEDIMAGESOFTHEIRCORRESPONDINGTHERMALANDVISUALIMAGESARESHOWNFIG4CACHCVCDLO_RHI_RLO_RHI_RCOLUMNSCOLUMNSCOLUMNSCOLUMNSLO_RWKEEPHI_R222222FIGURE3STEPSFORRECONSTRUCTIONOFANIMAGELO_DROWSHI_DROWSCAJ22LO_DHI_DLO_DHI_DCOLUMNSCOLUMNSCOLUMNSCOLUMNS2222CACHCVCDFIGURE2STEPSFORDECOMPOSITIONOFANIMAGEABCFIGURE4SAMPLEATHERMALIMAGESBVISUALIMAGESCCORRESPONDINGFUSEDIMAGESOFIRISDATABASEBTRAININGANDTESTINGATTHETIMEOFEXPERIMENT,WEUSEDTOTAL200VISUALAND200THERMALIMAGES,INWHICH20IMAGESPERCLASSOF10DIFFERENTCLASSESOFIRISDATABASEDAUBECHIESWAVELETTRANSFORMHASBEENUSEDTOGENERATEFUSEDIMAGESOFBOTHTHEDATABASESTHEDAUBECHIESWAVELETDB2DECOMPOSESTHEIMAGESUPTOFIVELEVELSTOMAKINGFUSIONIMAGEHERE,WECONSIDERHUMANFACERECOGNITIONUSINGMULTILAYERPERCEPTRONMLPTHEDAUBECHIESWAVELETDB2DECOMPOSESTHEIMAGESUPTOFIVELEVELSTOMAKINGFUSIONIMAGEHERE,WECONSIDERHUMANFACERECOGNITIONUSINGMULTILAYERPERCEPTRONMLPFORTHISRESEARCHPAPER,WEFIRSTTRAINOURNETWORKUSING100FUSEDIMAGESIE10IMAGESPERCLASSANDTHOSEARECONVERTEDFROMVISUALANDTHEIRCORRESPONDINGTHERMALIMAGESOFIRISTHERMAL/VISUALFACEDATABASEATTHETIMEOFTRAINING,MULTILAYERNEURALNETWORKWITHBACKPROPAGATIONHASBEENUSEDMOMENTUMALLOWSTHENETWORKTORESPONDNOTONLYTOTHELOCALGRADIENT,BUTALSOTORECENTTRENDSINTHEERRORSURFACEAFTERTRAININGTHENETWORK,ITWASTESTEDWITHATOTALOF10DIFFERENTRUNSFOR10DIFFERENTCLASSESANDALLTHEEXPERIMENTSRESULTSOFIRISDATABASEARESHOWNINTABLEIALLTHESEIMAGESCONTAINEDDIFFERENTKINDOFEXPRESSIONSAND70OFTHEIMAGESWERETAKENINDIFFERENTILLUMINATIONCONDITIONSTHECLASSESWITHDIFFERENTILLUMINATIONSWITHCHANGESINEXPRESSIONSARECLASS1,CLASS2,CLASS3,CLASS4,CLASS6,CLASS7ANDCLASS9,WHEREASCLASS5,CLASS8ANDCLASS10AREWITHCHANGESINEXPRESSIONSONLYINTHEFIGURE5,ALLTHERECOGNITIONRATESOFDIFFERENTCLASSESAREPRESENTEDFROMTHATFIGUREONECANOBSERVETHATTHECLASSES,CLASS3,CLASS6,CLASS7ANDCLASS10ARESHOWINGHIGHESTRECOGNITIONRATEOUTOFTHOSEFOURCLASSES,CLASS3ANDCLASS6CONTAINTHEIMAGESWITHCHANGESINILLUMINATIONASWELLASEXPRESSIONWHEREASOTHERTWOCLASSESCONTAINIMAGESWITHCHANGESISEXPRESSIONSONLYFIGURE5SHOWSRECOGNITIONRATEWITHFALSEREJECTIONTABLEIEXPERIMENTALRESULTSONIRISCLASSESUSEDNOOFTRAININGIMAGESNOOFTESTINGIMAGESWHICHARENOTUSEDDURINGTRAININGRECOGNITIONRATECLASS1101080CLASS2101070CLASS31010100CLASS4101070CLASS5101080CLASS61010100CLASS7101080CLASS81010100CLASS9101070CLASS101010100IVCONCLUSIONINTHISAFUSIONTECHNIQUEFORHUMANFACERECOGNITIONUSINGDAUBECHIESWAVELETTRANSFORMONTHEFACEIMAGESOFDIFFERENTILLUMINATIONWITHEXPRESSIONHASBEENPRESENTEDAFTERCOMPLETIONOFFUSION,IMAGESWEREPROJECTEDINTOANEIGENSPACETHOSEPROJECTEDFUSEDEIGENFACESARECLASSIFIEDUSINGAMULTILAYERPERCEPTRONEIGENSPACEISCONSTITUTEDBYTHEIMAGESBELONGTOTHETRAININGSETOFTHECLASSIFIER,WHICHISAMULTILAYERPERCEPTRONTHEEFFICIENCYOFTHESCHEMEHASBEENDEMONSTRATEDONIRISTHERMAL/VISUALFACEDATABASEWHICHCONTAINSIMAGESGATHEREDWITHVARYINGLIGHTING,FACIALEXPRESSION,POSEANDFACIALDETAILSTHESYSTEMHASACHIEVEDAMAXIMUMRECOGNITIONRATEOF100INFOURDIFFERENTCASESWITHANOVERALLRECOGNITIONRATEOF85ACKNOWLEDGMENTFIRSTAUTHORISTHANKFULTOTHEPROJECTENTITLED“DEVELOPMENTOFTECHNIQUESFORHUMANFACEBASEDONLINEAUTHENTICATIONSYSTEMPHASEI”SPONSOREDBYDEPARTMENTOFINFORMATIONTECHNOLOGYUNDERTHEMINISTRYOFCOMMUNICATIONSANDINFORMATIONTECHNOLOGY,NEWDELHI110003,GOVERNMENTOFINDIAVIDENO1214/08ESD,DATED27/0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购买物品验收协议书
- 购买样板房合同范本
- 2025年电控实训选题题库及答案
- 2025年高考新疆语文真题及答案
- 经营基础知识题库及答案
- 2025阳泉平定县从社区专职网格员中选聘社区专职工作人员备考题库完整答案详解
- 体育公务员面试题及答案
- 2025渤海银行管理人员市场化选聘招聘备考题库附答案详解(巩固)
- 2025西藏拉萨市总工会招聘工会社会工作者30人备考题库及完整答案详解
- 2025年天元中学分班试卷及答案
- 校园监控系统升级改造工程项目投标方案(技术标)
- 维修单(标准模版)
- 安庆市阳光花园二期建设项目可行性论证报告
- 综合医院医疗影像机房暖通空调设计要点
- 消防喷淋施工组织设计
- 第十章蜜蜂授粉
- 最新《工会基础知识》试题库及答案1000题【完美打印版】
- 熵权法教学讲解课件
- 专业技术报告xxx电厂2600MW亚临界空冷机组除尘器性能异常分析报告
- 2023年四川省产业振兴发展投资基金有限公司校园招聘笔试题库及答案解析
- 妊娠合并系统性红斑狼疮病例讨论课件
评论
0/150
提交评论