上、下极限的性质与应用_第1页
上、下极限的性质与应用_第2页
上、下极限的性质与应用_第3页
上、下极限的性质与应用_第4页
上、下极限的性质与应用_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

毕业论文题 目 上、下极限的性质与应用 学生姓名 王丹丹 学号 所在学院 数学与计算机科学学院 专业班级 数学与应用数学数教1101班 指导教师 洪 洁 _ _ _完成地点 陕西理工学院 _ _2015年6月10日上、下极限的性质与应用王丹丹(陕西理工学院数学与计算机科学学院数学与应用数学专业数教1101班,陕西 汉中 )指导教师:洪洁摘要本文总结上、下极限的概念和上、下极限的保序性、保不等式性、以及在四则运算中的一些性质,举例阐明了上、下极限在数列敛散性、极限运算以及级数论中的作用,并且具体论述了上、下极限在实变函数以及测度论中的应用.关键词上极限; 下极限; 数列;收敛性 1 引言极限思想是数学分析中重要思想,极限思想方法贯穿于数学分析课程的始终.上、下极限的概念1是极限概念的延伸,由于上、下极限的引入,对于某些定理和题目的证明开通了一条全新的思路,例如,上、下极限在数列的敛散性的证明和数列运算问题上的作用;并且,上、下极限的引入能使极限问题的分析更加细致深入,对于正确地理解和认识数列、函数的上、下极限、更好地认清数列、函数尤其是非收敛数列、函数的内部结构形态有非常重要的作用;另外,上、下极限的概念在数列与级数论以及许多后继数学课程和研究领域里都有重要的应用,例如:实变函数论2,概率论3,测度论4等学科都从不同角度应用到了上、下极限的概念.所以对上、下极限有个清楚的认识是非常必要的.为了使大学生和即将考研的学生能够全面的认识与理解上、下极限以及它的相关应用,本文将从上、下极限的性质、应用两个方面作深入细致的探讨.2 上、下极限的概念2.1 数列的上、下极限的概念定义2.1.15 若表示数列的最大(小)聚点,则.定义2.1.26 设是有界数列,若表示数列的所有收敛子列的极限值中的最大(小)者,则.注 数列的上极限的特征是(1)子列使得.(2)对于的任一收敛子列恒有.同样,下极限的特征是(1)子列使得.(2)对于的任一收敛子列恒有.(3)若是的子列,则 , .利用这些,可以将上、下极限的问题,通过选子列的方法解决.定义2.1.37 称为数列的上极限,称为数列的下极限.注 由于定义2.1.2 设是有界数列,下面讨论关于定义2.1.1-2.1.3数列无界的情况:(1)数列有下界而无上界按定义2.1.1,扩充聚点也可为,显然,数列的最大聚点为,而最小聚点可能为有限数,可能为.按定义2.1.2, ,可为极限点,显然,数列所有收敛子列的极限组成数集的上确界为,而其下确界可能为有限数,可能为.按定义2.1.3,显然,而单调增加,但可能没有上界,故可能为有限数,可能为.(2)数列有上界而无下界,同上.(3)数列既无上界又无下界,此时按定义2.1.1,定义2.1.2,定义2.1.3,都有,.据上,对无界数列情形,以上三种定义也等价.定义2.1.48 称为数列的上极限,称为数列的下极限.定义2.1.59 设是一个实数(1)若对,有无穷多个使得,同时至多有有限个使得,数称为数列的上极限,记作.(2)若对,有无穷多个使得,同时至多有有限个使得,数称为数列的下极限,记作.注1 由文献6可知定义2.1.1-2.1.5是等价的.注2 由于其优点各异(定义2.1.1、定义2.1.2容易想象,定义2.1.3、定义2.1.4便于运用,定义2.1.5介乎其间),不同的教材侧重于不同的优点,自然就会出现不同形式的定义了.推论 当的充分必要条件是.注1 若是无界数列,则它的上、下极限至少有一个不存在.当没有上界时,我们可以认为它的上极限为,记为;当没有下界时,它的极限为,记为.但当数列单方有界时,却不能导出上、下极限之一存在的结论. 2.2 函数的上、下极限 定义2.2.110 设在点的某去心邻域内有定义,如果存在点列使,则称时,存在子极限.或者说是当时的一个子极限.与数列情形类似,可以证明子极限必有最大者与最小者,分别称作上极限与下极限记为以及.同样有存在且仅当2.3集合列的上、下极限 定义2.3.111 设是一个集合列,记;.它们分别称为集合列的上极限与下极限.3 上、下极限的性质性质3.112(保序性) 性质3.213(控制性质) 若为的子列,则有性质3.35(保不等式性) 设数列和是两个有界数列且有,使当时,有则,.注1 若有(常数),则有;若有,则有.注2 若为常数,又存在,时有则.性质3.414(符号性质) ,.性质3.515(符号性质)(1)若,则,. (2)若,则,.性质3.6 若为有界递增数列,则相比极限运算,上极限和下极限的优点在于不是每个数列都有极限,但每个有界数列却都有上极限和下极限.因此,在一些很难建立数列的收敛性的问题中,采用上极限和下极限作为极限运算的替代物往往是一种很有效的手段.但是另一方面,相比极限运算,上极限和下极限运算又存在一个缺点,就是它们不存在类似于极限的四则运算那样的公式.但仍然成立下列一系列相对较弱的结论. 性质3.7 (加减运算性质)若,为有界数列,则 (3.1) . (3.2) 注1 不等式(3.1)和(3.2)中的严格不等号有可能成立.例如,取,则有,.推论 若和中有一个收敛,则有:,.性质3.8(加减运算性质) 若,为有界数列,则.性质3.9(乘法运算性质) 若,则.特别地,若与之一收敛时取等号. 性质3.10(倒数运算性质) 若,则.推论 若,且则数列收敛.4 上、下极限的应用 4.1上、下极限在数列敛散性中的作用上面我们总结了上、下极限的概念以及它的相关性质,下面就利用上、下极限的概念和性质来解决数列的敛散性.例4.1.1若则.分析 有界数列的极限不存在,即有界数列发散时,但有界数列的上极限和下极限一定是存在的;又由定义2.1.5的推论可知当一个数列收敛时,它的极限值与上、下极限之间的关系.这个例子就是利用这个数列本身的结构及其与上、下极限的关系来证明它的敛散性.证 设,当时,结论必然成立.当时,由数列极限的定义可知,当时,有,任取,令,将所得个不等式相乘,由可得:,即,则.其中,于是有,由此得.由的任意性可知,所证结论成立.例4.1.2设 为有界数列, 是它的一个子列, ,证明,如果 ,则 收敛并求其极限.证 由上,下极限的性质3.7有 , ,于是 .由 可得,从而 收敛,令 . 则 ,由于 ,因此 .利用上、下极限讨论问题的方便之处在于,不需要在数列是否有极限的问题上花费太多的功夫,而可以直接利用给定条件来讨论上、下极限的关系,从而少绕了不少弯下面就是一个例子,如果不使用上、下极限的工具,论证将会比较繁琐.例4.1.3 设非负数列 满足条件, ,证明数列 .证 对任意的 有,于是,因此数列 是有界数列,从而上、下极限以及上、下界都是有限数.令,则有.取定正整数,对于任意的正整数,必有,于是,因此 .对于固定的,取上极限便得.对于每一个都成立,因而,从而有.又根据所以.上、下极限的概念与性质的引入,为很多问题的证明都开辟了一条简便的思路,尤其是对于柯西收敛原则的证明上表现最为突出.如果没有上、下极限的概念与性质,在证明柯西收敛原则的充分性时,就要分三步证明:(1)证明有界;(2)证明有收敛子列收敛到某个常数;(3)证明也收敛到.而利用上、下极限的概念的性质,在证明柯西收敛原则的充分性时就提供了很多方便之处. 定理4.1.4 设是有界数列. (1)的充分必要条件是对任何都存在 ,使当 时,就有 且在 的一个子列 ,使得 ; (2) 的充分必要条件是对任何都存在 ,使当 时,就有 且存在的一个子列,使得. 定理4.1.5 若 是有界数列且有 和,则有 (1) 存在 的一个子序列收敛于 ; (2) 存在 的一个子序列收敛于 ; (3)存在 的任一收敛子列,若其极限为 ,则有 .定理4.1.6(柯西收敛原则) 数列收敛的充分必要条件是它是一个柯西数列.证 必要性 设 .于是对于任给的 ,都有 ,使当 时,就有 .于是当 时,就有 ,即 为柯西数列.充分性 设 是柯西数列.于是有 ,使当 时,就有 .特别地,当 时,有可见, 有界.对于任给的 ,存在 ,使当 时,就有 , .在上式中分别取上,下极限,由定理4.1.4得到 .因此有 .由 的任意性即得 .再由定理4.1.5即知 收敛.注1 柯西数列10:设是一个数列,如果对于,都存在自然数,使当,时,就有,则称为柯西数列或基本数列.注2 柯西收敛原则的证明为数列的敛散性的证明又提供了一条快速有效的思路,即要证明一个数列是收敛数列,只要证明它是柯西数列便可.4.2上、下极限在极限运算中的作用例4.2.1已知,求证.分析 这个题被用作加深学生对极限概念的理解,常见学生犯以下错误:由于对任意,存在,当时,有,所以 (4.1)令,得到 .再由的任意性得到 .错误是预先认定了极限的存在.如果应用上、下极限,就可绕开极限是否存在这个问题.证 由(1),令,得到,再由的任意性得到.于是推得 .类似上述过程,不少书中直接写为:“令,(4.1)式的左右两边分别趋于和.”由于的任意性可得.不是每个数列都有极限,但每个有界数列却都有上极限和下极限.因此,在一些很难建立数列的收敛性的问题中,采用上极限和下极限作为极限运算的替代物往往是一种很有效的手段下面就是一个利用上极限与下极限运算解决极限问题例子.例4.2.2 设,定义 , (4.2)试证 .证 易得到.因而与存在,而且. 由此可得到,令则.故单调递减.在中取上限可得,所以有,故,因而存在,在中取极限,可得出.注 如果,则有,因而的极限存在且等于零,在(4.2)中令,便得到矛盾.求解函数的上、下极限,有利于认清函数本身的结构.例4.2.3 设,求,.解 据函数的有界性可知,任何子极限都介于-1和1之间.选取数列则.若选取则.因此可知,.可以证明,任何介于之间的实数都是时的子极限.4.3 上、下极限在级数论中的作用 上、下极限在级数理论中将会使一些结果更为完整.例如,利用上、下极限改进了达朗贝尔判别法10(比值判别法),柯西判别法10(根值判别法),使得它们的结论更加完整.而利用改进型的判别法,可以得到幂级数收敛半径的完整性结果.定理4.3.1 对于正项级数,令.那么(1)当时,级数收敛;(2)当或无穷大时,级数发散;(3)当时,级数可能收敛也可能发散.注 改进型的判别法就是针对达朗贝尔判别法(比值判别法),柯西判别法(根值判别法)这两个判别法中的极限与不存在的情形给出的.幂级数收敛半径的结论如下对于幂级数,如果 或, (4.3)则幂级数的收敛半径如果(4.3)的极限不存在,利用上、下极限就可以得到完整的结论.定理4.3.2 对于幂级数,令,则幂级数的收敛半径注 定理4.3.2是对幂级数收敛半径的结论的进一步补充,得到幂级数收敛半径完整性的结果.4.4 上、下极限在后续教程中的应用引入上、下极限的概念在一些后续课程中也有很大的作用.特别是在实变函数的教学中.如大家所知,关于积分有三大收敛定理,其中引理的表述就要用到上、下极限的概念. 如果在教学中没有预先引进下极限的概念,理论在这里就将是无法处理的.定理4.4.1(引理) 若是可测集上非负可测函数列,则.证 非负函数显然有,而且,.由定理得.注1 定理11:设是可测集上的非负可测函数列,满足,且有,则.注2 由引理推导控制收敛定理时,上、下极限的作用也是不可替代的,最后必须由不等式.推出 上、下极限的概念的引入在测度论中也有很重要的作用. 定理4.4.22 设集列是单调增加的可测集列,则.定理4.4.32 设集列是单调减少的可测集列,且,则.例4.4.4 设是中一列可测集,证明:(1);(2)若存在,使,则.证 (1)因为.记,则.由定理4.4.3得.由于对任何,成立,所以.(2)因为,记,则.又已知存在,使,由定理4.4.2得.由于对任何,有,所以.参考文献1隋廷芳.上、下极限的七个等价定义 J.呼盟电大分校学报,1994:10. 2胡长松.实变函数M.北京:科学出版社,2002.11:56-57.3Robert Ely.Nonstandard Student Conceptions About InfinitesimalsJ.Journal For Research in Mathematics Education,2010,41;117-146. 4Ryszard Engelking.General TopologyM.London:Warszarva,1977:27-47.5华东师范大学数学系编:数学分析(第三版)(上)M.北京:高等教育出版社,2001:172-176.6杜其奎,陈金茹.数学分析精读讲义(上)M.北京:科学出版社,2012:236-237.7崔尚斌.数学分析教程(上)M.北京:科学出版社,2013:70-71.8毛羽辉,韩士安,吴畏.数学分析学习指导书(第四版)(上) M. 北京:高等教育出版社,2011.6:249-252.9马建国.数学分析(上)M.北京:科学出版社,2011.5:53-55.10郭林,王学武,刘柏枫.数学分析(3)M. 北京:清华大学出版社,2012.4:13-15.11郭懋正.事变函数与泛函分析M.北京:北京大学出版社,2005.2:117-118.12李成章,黄玉民.数学分析(第二版)(上)M. 北京:科学出版社,2007:40-41.13叶常青.数列上、下极限的新定义及其应用J.漳州师院学报,1996:48-52.14美G.克莱鲍尔.数学分析M.上海:科学技术出版社,1983:50-52.15王振福,张建军.数列的上极限与下极限探析J. 包头:包头职业技术学院学报,2008.3(1):12-14.The Nature Of the Superior and Inferior Limits and the ApplicationWangDanDan(Grade110, Class1, Major Mathematics and appl

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论