




已阅读5页,还剩25页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,第七章多元微分学,空间曲面与曲线,多元复合函数及隐函数求导法则,多元函数的极值和最优化问题,偏微商与全微分,多元函数的基本概念,1,教学目的:,本章重点:,本章难点:,偏导数与全微分的概念,多元复合函数求导法则,多元函数极值求法.,二元复合函数微分法,多元函数的极值与求法.,2,目的要求掌握复合函数求偏导法则,隐函数求偏导法则。重点复合函数求偏导法则难点复合函数求偏导法则,7.4多元复合函数及隐函数求导法则,3,一、复合函数求导法则定理(1)u=(x,y),v=(x,y)的偏导数在点(x,y)处连续;(2)函数z=f(u,v)的偏导数在(x,y)的对应点(u,v)处连续.则复合函数z=f(x,y),(x,y)在(x,y)处存在连续的偏导数,且,7.4多元复合函数及隐函数求导法则,4,z=f,u,v,x,y,x,y,链式法则,复合函数求导法则z=f(u,v)u=u(x,y),v=v(x,y),5,注:此题可不用链式法则来解,导数,6,幂指函数,注:此题必须用链式法则来解,导数,7,解:,练习,8,9,考研题目,10,几种常见的形式(1)若z=f(u,v),u=u(x),v=v(x)只有一个自变量,u,v,x,z=f,则,这时,11,(2)若z=f(u),u=u(x,y),u是一个中间变量,z=f,u,12,(3)若z=f(u,x,y),u=(x,y),z=f,u,x,y,对于本形式,要注意以下几点:,13,注意这里x,y具有双重身份:既作为自变量,也作为中间变量。2.,前一个把x看作自变量,后一个把x看作中间变量。,z=f,u,x,y,14,例设z=xy+et,x=sint,y=cost.求,解,15,例设u=f(x,y,z),z=sin(x2+y2),求,u=f,x,y,解,练习,16,例设z=f(x2-y2,exy),f有连续偏导数求,z=f,u,v,解,17,例设z=f(x2-y2,exy),f有连续偏导数求,z=f,u,v,解,z=f,u,v,18,例,解,f,u,v,19,例,20,解法二,例,21,隐函数微分法(1.二元方程确定的一元隐函数)设F(x,y)=0确定y是x的可微函数y=y(x),则Fx,y(x)0,可知,F通过y是x的函数。,F,x,y,x,二、复合函数微分法的应用,利用复合函数微分法,22,导数,23,练习,24,2.三元方程确定的二元隐函数设F(x,y,z)=0确定z是x,y的函数,根据链式法则有,F,x,y,z,x,y,25,26,27,小节,复合函数求导法则,隐函数求导法则设F(x,y,z)=0确定z是x,y的函数,根据链式法则有,作业:5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 军事地理学与冷战空间认知-洞察阐释
- 发票托管服务协议
- 小学五年级下册的语文期中试卷
- 量子调控的纳米结构设计-洞察阐释
- 2025企业公司与员工劳动合同标准范本
- 矿产开采权抵押贷款还款计划合同
- 2025成都合同协议格式
- 2025合同销售员辞职报告范文
- 耳鼻喉科疾病的护理技巧
- 小学二年级《安全法制教育》主题班会教案全册
- 重庆市沙坪坝区南开中学校2023-2024学年八年级下学期期末英语试题(无答案)
- DL-T839-2003大型锅炉给水泵性能现场试验方法
- JC-T408-2005水乳型沥青防水涂料
- FZT 74005-2016 针织瑜伽服行业标准
- 2024年广东佛山市顺德区公安局辅警招聘笔试参考题库附带答案详解
- GB/T 43701-2024滑雪场地滑雪道安全防护规范
- 2024年高考工作总结(35篇)
- 文字学概要完整版本
- 酒店前台接待培训课件
- 《电力机车制动机》课件 7-02 最大最小有效减压量计算
- 《冠脉造影流程操作》课件
评论
0/150
提交评论