




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
/forum.php?mod=viewthread&tid=(2009益阳)如图11,ABC中,已知BAC45,ADBC于D,BD2,DC3,求AD的长. 小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题:(1)分别以AB、AC为对称轴,画出ABD、ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,证明四边形AEGF是正方形; (2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.BCAEGDF图11(1)证明:由题意可得:ABDABE,ACDACF DABEAB,DACFAC,又BAC45,EAF90又ADBCEADB90FADC90又AEAD,AFADAEAF四边形AEGF是正方形(2)解:设ADx,则AEEGGFxBD2,DC3BE2,CF3BGx2,CGx3在RtBGC中,BG2CG2BC2( x2)2(x3)252化简得,x25x60解得x16,x21(舍)所以ADx6(2010南充)如图,ABC内接于O,ADBC,OEBC, OEBC(1)求BAC的度数(2)将ACD沿AC折叠为ACF,将ABD沿AB折叠为ABG,延长FC和GB相交于点H求证:四边形AFHG是正方形(3)若BD6,CD4,求AD的长AFCDEGHBOAFCDEGHBOAFCDEGHBO(1)解:连结OB和OCOEBC,BECEOEBC,BOC90,BAC45(2)证明:ADBC,ADBADC90由折叠可知,AGAFAD,AGHAFH90,BAGBAD,CAFCAD,BAGCAFBADCADBAC45GAFBAGCAFBAC90四边形AFHG是正方形(3)解:由(2)得,BHC90,GHHFAD,GBBD6,CFCD4设AD的长为x,则BHGHGBx6,CHHFCFx4在RtBCH中,BH2CH2BC2,(x6)2(x4)2102解得,x1=12,x22(不合题意,舍去)AD12(2013呼和浩特)在平面直角坐标系中,已知点A(4,0)、B(6,0),点C是y轴上的一个动点,当BCA=45时,点C的坐标为(0,12)或(0,12)考点:圆周角定理;坐标与图形性质;勾股定理分析:如解答图所示,构造含有90圆心角的P,则P与y轴的交点即为所求的点C注意点C有两个解答:解:设线段BA的中点为E,点A(4,0)、B(6,0),AB=10,E(1,0)(1)如答图1所示,过点E在第二象限作EPBA,且EP=AB=5,则易知PBA为等腰直角三角形,BPA=90,PA=PB=;以点P为圆心,PA(或PB)长为半径作P,与y轴的正半轴交于点C,BCA为P的圆周角,BCA=BPA=45,即则点C即为所求过点P作PFy轴于点F,则OF=PE=5,PF=1,在RtPFC中,PF=1,PC=,由勾股定理得:CF=7,OC=OF+CF=5+7=12,点C坐标为(0,12);(2)如答图2所示,在第3象限可以参照(1)作同样操作,同理求得y轴负半轴上的点C坐标为(0,12)综上所述,点C坐标为(0,12)或(0,12)故答案为:(0,12)或(0,12)(2008北京)在平面直角坐标系中,抛物线与轴交于两点(点在点的左侧),与轴交于点,点的坐标为,将直线沿轴向上平移3个单位长度后恰好经过两点(1)求直线及抛物线的解析式;(2)设抛物线的顶点为,点在抛物线的对称轴上,且,求点的坐标;1Oyx2344321-1-2-2-1(3)连结,求与两角和的度数解:(1)(2)24解:(1)沿轴向上平移3个单位长度后经过轴上的点,设直线的解析式为在直线上,解得直线的解析式为1分抛物线过点,解得抛物线的解析式为2分1Oyx2344321-1-2-2-1PEBDACF图1(2)由可得,可得是等腰直角三角形,如图1,设抛物线对称轴与轴交于点,过点作于点可得,在与中,解得点在抛物线的对称轴上,点的坐标为或5分(3)解法一:如图2,作点关于轴的对称点,则连结,1Oyx2344321-1-2-1BDACF图2可得,由勾股定理可得,又,是等腰直角三角形,1Oyx2344321-1-2-2-1BDACF图3即与两角和的度数为7分解法二:如图3,连结同解法一可得,在中,在和中,即与两角和的度数为(2013十堰)已知抛物线y=x22x+c与x轴交于AB两点,与y轴交于C点,抛物线的顶点为D点,点A的坐标为(1,0)(1)求D点的坐标;(2)如图1,连接AC,BD并延长交于点E,求E的度数;(3)如图2,已知点P(4,0),点Q在x轴下方的抛物线上,直线PQ交线段AC于点M,当PMA=E时,求点Q的坐标考点:二次函数综合题分析:(1)将点A的坐标代入到抛物线的解析式求得c值,然后配方后即可确定顶点D的坐标;(2)连接CD、CB,过点D作DFy轴于点F,首先求得点C的坐标,然后证得DCBAOC得到CBD=OCA,根据ACB=CBD+E=OCA+OCB,得到E=OCB=45;(3)设直线PQ交y轴于N点,交BD于H点,作DGx轴于G点,增大DGBPON后利用相似三角形的性质求得ON的长,从而求得点N的坐标,进而求得直线PQ的解析式,设Q(m,n),根据点Q在y=x22x3上,得到m2=m22m3,求得m、n的值后即可求得点Q的坐标解答:解:(1)把x=1,y=0代入y=x22x+c得:1+2+c=0c=3y=x22x3=y=(x1)24顶点坐标为(1,4);(2)如图1,连接CD、CB,过点D作DFy轴于点F,由x22x3=0得x=1或x=3B(3,0)当x=0时,y=x22x3=3C(0,3)OB=OC=3BOC=90,OCB=45,BC=3又DF=CF=1,CFD=90,FCD=45,CD=,BCD=180OCBFCD=90BCD=COA又DCBAOC,CBD=OCA又ACB=CBD+E=OCA+OCBE=OCB=45,(3)如图2,设直线PQ交y轴于N点,交BD于H点,作DGx轴于G点PMA=45,EMH=45,MHE=90,PHB=90,DBG+OPN=90又ONP+OPN=90,DBG=ONP又DGB=PON=90,DGB=PON=90,DGBPON即:=ON=2,N(0,2)设直线PQ的解析式为y=kx+b则解得:y=x2设Q(m,n)且n0,n=m2又Q(m,n)在y=x22x3上,n=m22m3m2=m22m3解得:m=2或m=n=3或n=点Q的坐标为(2,3)或(,)(2014威海)如图,已知抛物线y=ax2+bx+c(a0)经过A(1,0),B(4,0),C(0,2)三点(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出BDA的度数 考点:二次函数综合题分析:(1)本题需先根据已知条件,过C点,设出该抛物线的解析式为y=ax2+bx+2,再根据过A,B两点,即可得出结果;(2)由图象可知,以A、B为直角顶点的ABE不存在,所以ABE只可能是以点E为直角顶点的三角形由相似关系求出点E的坐标;(3)如图2,连结AC,作DEx轴于点E,作BFAD于点F,由BCAD设BC的解析式为y=kx+b,设AD的解析式为y=kx+n,由待定系数法求出一次函数的解析式,就可以求出D坐标,由勾股定理就可以求出BD的值,由勾股定理的逆定理就可以得出ACB=90,由平行线的性质就可以得出CAD=90,就可以得出四边形ACBF是矩形,就可以得出BF的值,由勾股定理求出DF的值,而得出DF=BF而得出结论解答:解:(1)该抛物线过点C(0,2),可设该抛物线的解析式为y=ax2+bx+2将A(1,0),B(4,0)代入,得 ,解得 ,抛物线的解析式为:y=x2+x+2(2)存在由图象可知,以A、B为直角顶点的ABE不存在,所以ABE只可能是以点E为直角顶点的三角形来源:学+科+网Z+X+X+K在RtBOC中,OC=2,OB=4,BC=在RtBOC中,设BC边上的高为h,则h=24,h=BEACOB,设E点坐标为(x,y),=,y=2将y=2代入抛物线y=x2+x+2,得x1=0,x2=3当y=2时,不合题意舍去E点坐标为(0,2),(3,2)(3)如图2,连结AC,作DEx轴于点E,作BFAD于点F,BED=BFD=AFB=90设BC的解析式为y=kx+b,由图象,得,yBC=x+2由BCAD,设AD的解析式为y=x+n,由图象,得0=(1)+nn=,yAD=xx2+x+2=x,解得:x1=1,x2=5D(1,0)与A重合,舍去,D(5,3)DEx轴,DE=3,OE=5由勾股定理,得BD=A(1,0),B(4,0),C(0,2),OA=1,OB=4,OC=2AB=5在RtAOC中,RtBOC中,由勾股定理,得AC=,BC=2,AC2=5,BC2=20,AB2=25,AC2+BC2=AB2ACB是直角三角形,ACB=90BCAD,CAF+ACB=180,CAF=90CAF=ACB=AFB=90,四边形ACBF是矩形,AC=BF=,在RtBFD中,由勾股定理,得DF=,DF=BF,ADB=45(2009武汉)如图,抛物线经过、两点,与轴交于另一点求抛物线的解析式;已知点在第一象限的抛物线上,求点关于直线对称的点的坐标;在的条件下,连接,点为抛物线上一点,且,求点的坐标yxOABC【答案】解:抛物线经过,两点,解得抛物线的解析式为yxOABCDE点在抛物线上,即,或点在第一象限,点的坐标为由知,设点关于直线的对称点为点,且,点在轴上,且,yxOABCDEPF即点关于直线对称的点的坐标为方法一:作于,于由有:,且,设,则,点在抛物线上,(舍去)或,yxOABCDPQGH方法二:过点作的垂线交直线于点,过点作轴于过点作于,,又,由知,直线的解析式为解方程组得点的坐标为(2013年河南省中考数学试卷)如图,抛物线与直线交于两点,其中点在轴上,点的坐标为点是轴右侧的抛物线上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度数字化转型云计算服务借款合同
- 二零二五年度旅游行业短期雇佣劳动合同
- 二零二五年度班主任教师职业发展规划带教合同
- 2025版机场工程监理合同管理及服务内容
- 二零二五年度农村住房抵押贷款合同协议书
- 2025版重点工程招投标合同管理及质量控制合同
- 二零二五年度国际贸易结算及信用保险合同
- 2025版车库租赁与车位租赁及停车场管理合同
- 二零二五年度电子商务平台客户投诉处理服务合同
- 2025版房产抵押经营性租赁租赁权质押合同范本
- 配电网基础知识培训课件
- 湖南益阳市安化县医疗卫生单位招聘笔试真题2024
- 小学实验室化学危险物品安全管理制度
- 膀胱冲洗临床指南
- 吊装安全警示教育培训
- 变电站介绍课件
- 医务人员职业道德规范学习体会
- 建设工程现场安全文明施工措施费支付使用合同5篇
- 2025年新疆生产建设兵团国有企业招聘笔试参考题库含答案解析
- 电商采购供货协议范本
- 《冲击波疗法》课件
评论
0/150
提交评论