结构化学 分子对称性.ppt_第1页
结构化学 分子对称性.ppt_第2页
结构化学 分子对称性.ppt_第3页
结构化学 分子对称性.ppt_第4页
结构化学 分子对称性.ppt_第5页
已阅读5页,还剩62页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

,第四章分子的对称性第七章晶体结构的对称性,Symmetryisimportantinquantummechanicsfordeterminingmolecularstructureandforinterpretingspectroscopicinformation.Inadditionofbeingusedtosimplifycalculations,twopropertiesdirectlydependonsymmetry:opticalactivityanddipolemoments.Weconsiderequilibriumconfigurations,withtheatomsintheirmeanpositions.,5,a)具有对称中心的,b)没有对称中心的,a)氨分子(NH3)的三重轴,b)水分子(H2O)的二重轴,反映操作和镜面,垂直于主轴,通过主轴,通过主轴,平分两副轴(C2轴)的夹角,旋转反映操作和映轴,旋转反演操作和反轴,对称元素的组合-11、两个旋转轴的组合交角为2pi/2n的两个C2轴,在其交点上必定出现一个垂直于这两个C2轴的Cn轴;而垂直于Cn轴通过交点的平面内必有n个C2轴,对称元素的组合-22、两个镜面的组合交角为2pi/2n的两个镜面相交,则其交线必为n次轴Cn;Cn轴和通过它的镜面组合,一定存在n个镜面,相邻镜面的夹角为2pi/2n,对称元素的组合-33、偶次旋转轴和与它垂直的镜面的组合一个偶次旋转轴和与它垂直的镜面的组合,必定在其交点上出现对称中心-一个偶次旋转轴和对称中心组合,必有垂直于轴的镜面;,,群的定义,1、封闭性:2、主操作:3、逆操作:4、结合律:,群的实例,群的乘法表,规则:先行后列,(列行),分子点群的分类,Cn,Cnh,Cnv,Cni,Sn,Dn,Dnh,Dnd,T,Th,Td,O,Oh,I,Ih,26,PointgroupsPointgroupsareawayofclassifyingmoleculesintermsoftheirinternalsymmetry.Moleculescanhavemanysymmetryoperationsthatresultintoindistinguishableconfigurations.Differentcollectionsofsymmetryoperationsareorganizedintogroups.These11groupsweredevelopedbySchoenflies.C1:onlyidentity.Example:CHBrClFCs:onlyareflectionplane.Example:CH2BrClCi:onlyacenterofsymmetry.Example:staggered1,2-dibromo-1,2-dichloroethane.Cn:onlyaCncenterofsymmetry.ExampleofC2:hydrogenperoxide(notcoplanar)Cnv:onlyn-foldaxisandnvertical(ordihedral)mirrorplanes.ExampleofC2v:water;ofC3v:ammoniaCnh:onlyn-foldaxis,ahorizontalmirrorplane,acenterofsymmetryoranimproperaxis.ExampleofC2h:transdichloroethylene;ofC3h:B(OH)3.,27,Dn:OnlyaCnandC2perpendiculartoit(propeller):Dnd:ACn,twoperpendicularC2andadihedralmirrorplanecolinearwiththeprincipalaxis.D2dAllene:H2C=C=CH2.Dnh:ACn,andahorizontalmirrorplaneperpendiculartoCn.D6hbenzeneSn:ASnaxis.S41,3,5,7-tetramethylcyclooctatetraeneSpecial:Linearmolecules:Cv:ifthereisnoaxisperpendiculartotheprincipalaxisDh:ifthereisanaxisperpendiculartotheprincipalaxisTetrahedralmolecules:Td(acubeisTh)Octahedralmolecules:OhIcosahedronanddodecahedronmolecules:IhAsphere,likeanatom,isKh,28,Decisiontree:,分子的偶极矩和极化率,偶极矩:dipole,=qr(库仑米Cm),=4.810-18cmesu=4.8DDebye,1D=3.33610-30Cm,只有属于Cn和Cnv这两类点的分子才可能具有永久偶极矩,诱导偶极矩:在电场E中分子发生诱导极化而产生的,诱=E,分子的极化率,矢量,标量,分子的偶极矩和极化率,诱=E+EE+EEE+,分子的极化率,,分子的第一超极化率,分子的第二超极化率,分子的手性和旋光性,若分子具有反轴对称性,一定没有旋光性,若分子没有反轴对称性,可能具有旋光性,Mod1(R1=R2=Me),Symmetryoperationsobeythelawsofgrouptheory.,Asymmetryoperationcanberepresentedbyamatrixoperatingonabasesetdescribingthemolecule.,Differentbasissetscanbechosen,theyareconnectedbysimilaritytransformations.S-1ASdiagonalblockmatrix,Fordifferentbasissetsthematricesdescribingthesymmetryoperationslookdifferent.However,theircharacter(trace)isthesame!,群的表示,Matrixrepresentationsofsymmetryoperationscanoftenbereducedintoblockmatrices.Similaritytransformationsmayhelptoreducerepresentationsfurther.Thegoalistofindtheirreduciblerepresentation,theonlyrepresentationthatcannotbereducedfurther.,Thesame”type”ofoperations(rotations,reflectionsetc)belongtothesameclass.FormallyRandRbelongtothesameclassifthereisasymmetryoperationSsuchthatR=S-1RS.Symmetryoperationsofthesameclasswillalwayshavethesamecharacter.,群的表示,C,C,C,BlockMatrices,AA=ABB=BCC=C,Blockmatricesaregood,BlockMatrices,Ifamatrixrepresentingasymmetryoperationistransformedintoblockdiagonalformtheneachlittleblockisalsoarepresentationoftheoperationsincetheyobeythesamemultiplicationlaws.,Whenamatrixcannotbereducedfurtherwehavereachedtheirreduciblerepresentation.Thenumberofreduciblerepresentationsofsymmetryoperationsisinfinitebutthereisasmallfinitenumberofirreduciblerepresentations.,Thenumberofirreduciblerepresentationsisalwaysequaltothenumberofclassesofthesymmetrypointgroup.,GroupTheoryII,Asstatedbeforeallrepresentationsofacertainsymmetryoperationhavethesamecharacterandwewillworkwiththemratherthanthematricesthemselves.Thecharactersofdifferentirreduciblerepresentationsofpointgroupsarefoundincharactertables.Charactertablescaneasilybefoundintextbooks.,Reducingbigmatricestoblockdiagonalformisalwayspossiblebutnoteasy.Fortunatelywedonothavetodothisourselves.,CharacterTables,TheC3vcharactertable,Irreduciblerepresentations,Symmetryoperations,Theorderhis6Thereare3classes,CharacterTables,Operationsbelongingtothesameclasswillhavethesamecharactersowecanwrite:,Irreduciblerepresentations(symmetryspecies),Classes,TheGreatOrthogonalityTheorem,”Consideragroupoforderh,andletD(l)(R)betherepresentativeoftheoperationRinadl-dimensionalirreduciblerepresentationofsymmetryspeciesG(l)ofthegroup.Then”Readmoreaboutitinsection4.6.3.,Heresasmallerone,wherec(l)(R)isthecharacteroftheoperation(R).Orevenmoresimpleifthenumberofsymmetryoperationsinaclasscisg(c).Thensincealloperationsbelongingtothesameclasshavethesamecharacter.,TheLittleOrthogonalityTheorem,characterTables,Thereisanumberofusefulpropertiesofcharactertables:,Thesumofthesquaresofthedimensionalityofalltheirreduciblerepresentationsisequaltotheorderofthegroup,Thesumofthesquaresoftheabsolutevaluesofcharactersofanyirreduciblerepresentationisequaltotheorderofthegroup.,Thesumoftheproductsofthecorrespondingcharactersofanytwodifferentirreduciblerepresentationsofthesamegroupiszero.,Thecharactersofallmatricesbelongingtotheoperationsinthesameclassareidenticalinagivenirreduciblerepresentation.,Thenumberofirreduciblerepresentationsinagroupisequaltothenumberofclassesofthatgroup.,Irreduciblerepresentations,Eachirreduciblerepresentationofagrouphasalabelcalledasymmetryspecies,generallynotedG.WhenthetypeofirreduciblerepresentationisdetermineditisassignedaMullikensymbol:One-dimensionalirreduciblerepresentationsarecalledAorB.Two-dimensionalirreduciblerepresentationsarecalledE.Three-dimensionalirreduciblerepresentationsarecalledT(F).Thebasisforanirreduciblerepresentationissaidtospantheirreduciblerepresentation.DontmistaketheoperationEfortheMullikensymbolE!,Irreduciblerepresentations,ThedifferencebetweenAandBisthatthecharacterforarotationCnisalways1forAand-1forB.,Thesubscripts1,2,3etc.arearbitrarylabels.,Subscriptsgandustandsforgeradeandungerade,meaningsymmetricorantisymmetricwithrespecttoinversion.,Superscriptsanddenotessymmetryorantisymmetrywithrespecttoreflectionthroughahorizontalmirrorplane.,characterTables,Example:ThecompleteC4vcharactertable,Thesearebasisfunctionsfortheirreduciblerepresentations.Theyhavethesamesymmetrypropertiesastheatomicorbitalswiththesamenames.,characterTables,Example:ThecompleteC4vcharactertable,A1transformslikez.Edoesnothing,C4rotates90oaboutthez-axis,C2rotates180oaboutthez-axis,svreflectsinverticalplaneandsdinadiagonalplane.,characterTables,A2transformslikearotationaroundz.,ReducibletoIrreduciblerepresentation,Givenageneralsetofbasisfunctionsdescribingamolecule,howdowefindthesymmetryspeciesoftheirreduciblerepresentationstheyspan?,ReducibletoIrreduciblerepresentation,Ifwehaveaninterestingmoleculethereisoftenanaturalchoiceofbasis.Itcouldbecartesiancoordinatesorsomethingmoreclever.,Fromthebasiswecanconstructthematrixrepresentationsofthesymmetryoperationsofthepointgroupofthemoleculeandcalculatethecharactersoftherepresentations.,ReducibletoIrreduciblerepresentation,Howdowefindtheirreduciblerepresentation?Letsuseanoldexamplefromtwoweeksago:,C3vinthebasis(Sn,S1,S2,S3),Tofindthecharactersofthesymmetryoperationswelookathowmanybasiselements”fallontothemselves”(ortheirnegativeself)afterthesymmetryoperation.,E:c=4,C3:c=1,sv:c=2,ReducibletoIrreduciblerepresentation,SoC3vinthebasis(Sn,S1,S2,S3)willhavethefollowingcharactersforthedifferentsymmetryoperations.,ReducibletoIrreduciblerepresentation,SoC3vinthebasis(Sn,S1,S2,S3)willhavethefollowingcharactersforthedifferentsymmetryoperations.,Letsaddthecharactertableoftheirreduciblerepresentation,ByinspectionwefindGred=2A1+E,ReducibletoIrreduciblerepresentation,Thedecompositionofanyreduciblerepresentationintoirreducibleonesisuniqe,soifyoufindcombinationthatworksitisright.,Ifdecompositionbyinspectiondoesnotworkwehavetouseresultsfromthegreatandlittleorthogonalitytheorems(unlesswehaveaninfinitegroup).,ReducibletoIrreduciblerepresentation,FromLOTwecanderivetheexpression(seeEq4.6.2)whereaiisthenumberoftimestheirreduciblerepresentationGiappearsinGred,htheorderofthegroup,lanoperationofthegroup,g(c)thenumberofsymmetryoperationsintheclassofl,credthecharacteroftheoperationlinthereduciblerepresentationandcithecharacteroflintheirreduciblerepresentation.,ReducibletoIrreduciblerepresentation,Letsgobacktoourexampleagain.,SoonceagainwefindGred=2A1+E,ProjectionOperator,Symmetry-adaptedbasesTheprojectionoperatortakesnon-symmetry-adaptedbasisofarepresentationandandprojectsitalongnewdirectionssothatitbelongstoaspecificirreduciblerepresentationofthegroup.,wherePlistheprojectionoperatoroftheirreduciblerepresentationl,c(l)isthecharacteroftheoperationRfortherepresentationlandRmeansapplicationofRtoouroriginalbasiscomponent.,Applications?,Canallofthisactuallybeuseful?Yes,inmanyareasforexamplewhenstudyingelectronicstructureofatomsandmolecules,chemicalreactions,crystallography,stringtheory(Lie-algebra)etc,Letslookatonesimpleexampleconceringmolecularvibrations.MartinJnssonwilltellyoualotmoreinacoupleofweeks.,MolecularVibrations,WaterMolecularvibrationscanalwaysbedecomposedintoquitesimplecomponentscallednormalmodes.,Waterhas9normalmodesofwhich3aretranslational,3arerotationaland3aretheactualvibrations.,Eachnormalmodeformsabasisforanirreduciblerepresentationofthemolecule.,MolecularVibrations,Firstfindabasisforthemolecule.Letstakethecartesiancoordinatesforeachatom.,WaterbelongstotheC2vgroupwhichcontainstheoperationsE,C2,sv(xz)andsv(yz).,TherepresentationbecomesEC2sv(xz)sv(yz)Gred,9,-1,1,3,MolecularVibrations,CharactertableforC2v.,NowreduceGredtoasumofirreduciblerepresentations.Useinspectionortheformula.,MolecularVibrations,TherepresentationreducestoGred=3A1+A2+2B1+3B2,Gtrans=A1+B1+B2,Grot=A2+B1+B2,Gvib=2A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论