植物生理学-第七章 细胞信号转导.ppt_第1页
植物生理学-第七章 细胞信号转导.ppt_第2页
植物生理学-第七章 细胞信号转导.ppt_第3页
植物生理学-第七章 细胞信号转导.ppt_第4页
植物生理学-第七章 细胞信号转导.ppt_第5页
已阅读5页,还剩52页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第七章细胞信号转导,细胞的信号分子与受体,信号分子(signalmolecule)亲脂性信号分子亲水性信号分子气体性信号分子(NO)受体(receptor)多为糖蛋白第二信使(secondmessenger)分子开关(molecularswitches),细胞内受体:为胞外亲脂性信号分子所激活激素激活的基因调控蛋白(胞内受体超家族)细胞表面受体:为胞外亲水性信号分子所激活细胞表面受体分属三大家族:离子通道偶联的受体(ion-channel-linkedreceptor)G-蛋白偶联的受体(G-protein-linkedreceptor)酶偶连的受体(enzyme-linkedreceptor),受体的功能:介导物质跨膜运输(受体介导的内吞作用)信号转导:受体的激活(activation)(级联反应);受体失敏(desensitization)关闭反应、减量调节(down-regulation)降低反应。,通过细胞内受体介导的信号传递,甾类激素介导的信号通路两步反应阶段:初级反应阶段:直接活化少数特殊基因转录的,发生迅速;次级反应:初级反应产物再活化其它基因产生延迟的放大作用。一氧化氮介导的信号通路,通过细胞表面受体介导的信号跨膜传递,离子通道偶联的受体介导的信号跨膜传递G-蛋白偶联的受体介导的信号跨膜传递细胞表面其它与酶偶联的受体,离子通道偶联的受体介导的信号跨膜传递,信号途径特点:受体/离子通道复合体,四次/六次跨膜蛋白跨膜信号转导无需中间步骤主要存在于神经细胞或其他可兴奋细胞间的突触信号传递有选择性:配体的特异性选择和运输离子的选择性,G-蛋白偶联的受体介导的信号跨膜传递,cAMP信号通路磷脂酰肌醇信号通路受体酪氨酸激酶及RTK-Ras蛋白信号通路,细胞表面其它与酶偶联的受体,受体丝氨酸/苏氨酸激酶受体酪氨酸磷酸酯酶受体鸟苷酸环化酶(ANPs-signals)酪氨酸蛋白激酶联系的受体两大家族:一是与Src蛋白家族相联系的受体;二是与Janus激酶家族联系的受体。信号转导子和转录激活子(signaltransducerandactvatoroftranscription,STAT)与JAK-STAT途径。,cAMP信号通路,反应链:激素G-蛋白偶联受体G-蛋白腺苷酸环化酶cAMPcAMP依赖的蛋白激酶A基因调控蛋白基因转录组分及其分析G-蛋白偶联受体G-蛋白活化与调节效应酶腺苷酸环化酶GPLR的失敏(desensitization)与减量调节细菌毒素对G蛋白的修饰作用,GPLR的失敏:例:肾上腺素受体被激活后,10-15秒cAMP骤增,然后在不到1min内反应速降,以至消失。受体活性快速丧失(速发相)-失敏(desensitization);机制:受体磷酸化受体与Gs解偶联,cAMP反应停止并被PDE降解。两种Ser/Thr磷酸化激酶:PKA和肾上腺素受体激酶(ARK),负责受体磷酸化;胞内协作因子扑获蛋白(arrestin)-结合磷酸化的受体,抑制其功能活性(arrestin已克隆、定位11q13)。反应减弱(迟发相)-减量调节(down-regulation)机制:受体-配体复合物内吞,导致表面受体数量减少,发现arrestin可直接与Clathrin结合,在内吞中起adeptors作用;受体减量调节与内吞后受体的分选有关。,磷脂酰肌醇信号通路,“双信使系统”反应链:胞外信号分子G-蛋白偶联受体G-蛋白IP3胞内Ca2+浓度升高Ca2+结合蛋白(CaM)细胞反应磷脂酶C(PLC)DG激活PKC蛋白磷酸化或促Na+/H+交换使胞内pH,受体酪氨酸激酶及RTK-Ras蛋白信号通路,受体酪氨酸激酶(receptortyrosinekinases,RTKs)包括6个亚族信号转导:配体受体受体二聚化受体的自磷酸化激活RTK胞内信号蛋白启动信号传导RTK-Ras信号通路:配体RTKadaptorGRFRasRaf(MAPKKK)MAPKKMAPK进入细胞核其它激酶或基因调控蛋白(转录因子)的磷酸化修钸。G蛋白偶联受体介导的MAPK的激活RTKs的失敏(desensitization),G蛋白偶联受体介导的MAPK的激活MAPK(Mitogen-activatedproteinkinase)又称ERK(extracelularsignal-regulatedkinase)-真核细胞广泛存在的Ser/Thr蛋白激酶。MAPK的底物:膜蛋白(受体、酶)、胞浆蛋白、核骨架蛋白、及多种核内或胞浆内的转录调控因子-在细胞增殖和分化中具有重要调控作用。PTX敏感性G蛋白(Gi,Go)的亚基依赖于Ras激活MAPK,具体机制还有待深入研究;PKC、PLC与G蛋白偶联受体介导的MAPK激活PKC和PLC参与G蛋白偶联受体激活MAPK:G蛋白偶联受体激活G蛋白;G蛋白亚基或亚基激活PLC,促进膜磷脂代谢;磷脂代谢产物(DAG+IP3)激活PKC;PKC通过Ras或Raf激活MAPK;由于PKC对钙的依赖性不同,所以G蛋白偶联受体MAPK途径对钙要求不同;PKA对G蛋白偶联受体MAPK途径的负调控迄今未发现和制备出MAPK组成型突变(dominantnegativemutant),提示细胞难于忍受MAPK的持续激活(MAPK的去活是细胞维持正常生长代谢所必须)。主要机制:特异性的Tyr/Thr磷脂酶可选择性地使MAPK去磷酸化,关闭MAPK信号。cAMP,MAPK;cAMP直接激活cAMP依赖的PKA;PKA可能通过RTK或通过抑制Raf-Ras相互作用起负调控作用。,RTKs的失敏:催化性受体的效应器位于受体本身,因此失敏即酶活性速发抑制。机制:受体的磷酸化修饰。EGF受体Thr654的磷酸化导致RTK活性的抑制,如果该位点产生Ala突变,则阻止活性抑制,后又发现C端的Ser1046/7也是磷酸化位点。磷酸化位点所在的C端恰好是SH2蛋白的结合部位。引起受体磷酸化的激酶:PKC-作用于Thr654;CaMK2(Ca2+和CaM依赖的激酶2)-作用于Ser1046/7还发现:EGF受体是CDK的靶蛋白,提示和周期调控有关。RTK晶体结构研究表明,RTK激活后形成稳定的非抑制性构象;磷酸化修饰后,形成抑制性构象,引起失敏。RTK失敏对细胞正常功能所必须,RTK的持续激活将导致细胞生长失控。,由细胞表面整合蛋白介导的信号传递,整合蛋白与粘着斑导致粘着斑装配的信号通路有两条粘着斑的功能:一是机械结构功能;二是信号传递功能通过粘着斑由整合蛋白介导的信号传递通路:由细胞表面到细胞核的信号通路由细胞表面到细胞质核糖体的信号通路,细胞信号传递的基本特征与蛋白激酶的网络整合信息,细胞信号传递的基本特征:具有收敛(convergence)或发散(divergence)的特点细胞的信号传导既具有专一性又有作用机制的相似性信号的放大作用和信号所启动的作用的终止并存细胞以不同的方式产生对信号的适应(失敏与减量调节)蛋白激酶的网络整合信息与信号网络系统中的crosstalk,蛋白磷酸酶(proteinphosphatase,PP)蛋白磷酸酶的分类与蛋白激酶相对应,分为丝氨酸/苏氨酸型蛋白磷酸酶和酪氨酸型蛋白磷酸酶。有些酶具有双重底物特异性。对蛋白磷酸酶的研究还不如蛋白激酶那样深入。但两者的协同作用在细胞信号转导中的作用是不言而喻的。,植物的生长发育是在环境因子的影响下正确进行时空表达的过程,概念植物细胞信号转导(signaltransduction)是指细胞耦联各种刺激信号(包括各种内外刺激信号)与其引起特定生理效应之间的一系列分子反应机制。,植物细胞信号转导的模式,信号受体反应手触摸含羞草后小叶合拢手触摸就是刺激(信号),小叶合拢就是反应。偶联刺激到反应之间的生化和分子途径就是这个反应的信号转导途径。(signalingpathway),举例:信号转导途径:,信号(Signal)物理信号:光、电化学信号:激素、病原因子等,化学信号也叫做ligand胞外信号(胞间信号)胞内信号,第一节信号与受体结合,受体存在于细胞表面或亚细胞组分中的天然分子。具有特异性、高亲和力和可逆性等特征。在细胞内放大、传递信号,启动一系列生化反应,最终导致特定的细胞反应。细胞内受体(intracellularreceptor):存在于亚细胞组分(如细胞核等)上的受体。细胞表面受体(cellsuefacereceptor):位于细胞表面的受体。,细胞表面受体G蛋白连接受体(G-protein-linkedreceptor)受体蛋白的氨基端位于细胞外侧,羧基端位于内侧,一条单肽链形成几个螺旋的跨膜结构。羧基端具有与G蛋白相互作用的区域,受体活化后直接将G蛋白激活,进行跨膜信号转换。,G蛋白联接受体的分子模型,酶连受体(enzyme-linkedreceptor)受体本身是一种酶蛋白,当细胞外区域与配体结合时,可激活酶,通过细胞内侧酶的反应传递信号。,第二节跨膜信号转换,跨膜信号转换通过细胞表面的受体与配体结合来实现。G蛋白跨膜信号转换G蛋白(Gprotein)的全称为异三聚体GTP结合蛋白(heterotrimericGTPbindingprotein),它具有GTP酶的活性,由(31-46kD)、(约36kD)和(7-8kD)三种亚基组成。亚基上氨基酸残基的酯化修饰作用将G蛋白结合在细胞膜面向胞质溶胶的一侧。,G蛋白自身的活化和非活化作为一种分子开关,将膜外的信号转换为膜内的信号并进一步放大信号。,二元组分系统(two-componentsystemortwo-componentsignaling),细菌的二元组分系统以及大肠杆菌渗透势变化的信号转导Ninfa和Magasanik1986年首次报道了大肠杆菌营养信号转导的二元组分系统,大量的实验已经证实,二元组分系统是细菌信号转导的普遍机制。,第三节细胞内信号转导形成网络,初级信号:胞外信号第二信使:放大、传递胞外信号的分子,第二信使:细胞内传递和放大细胞外的刺激信号,最终引起细胞中生化反应的化学物质,如Ca2+、cAMP、IP3、DAG等。,Ca2/CaM在信号转导中的作用细胞内钙稳态(calciumhomeostasis)的调节质膜钙通道:从胞外或胞内钙库向细胞质释放Ca2质膜钙泵:从细胞质向细胞外或胞内钙库运送Ca2Ca2/nH+反向运输体从细胞质向胞内钙库运送Ca2Ca2单向运输体,红光刺激后大麦叶肉原生质体的钙离子浓度变化,钙调素(CaM)耐热的球蛋白,等电点4.0,分子量约为16.7kD。它是具有148个氨基酸的单链多肽。作用方式:直接与靶酶结合,诱导靶酶的活性构象,而调节靶酶的活性与Ca2+结合,形成活化态的Ca2+CaM复合体,然后再与靶酶结合将靶酶激活。CaM与Ca2+有很高的亲和力,一个CaM分子可与4个Ca2+结合。,Ca2+CaM的靶酶质膜上的Ca2+-ATP酶、Ca2+通道、NAD激酶、多种蛋白激酶等。酶被激活后,参与蕨类植物的孢子发芽、细胞有丝分裂、原生质流动、植物激素的活性、向性、调节蛋白质磷酸化,最终调节细胞生长发育。,IP3与DAG在信号转导中的作用磷脂酰肌醇-4、5-二磷酸(PIP2)是一种分布在质膜内侧的肌醇磷脂,占膜脂的极小部分。PI激酶PIP激酶DAG-活化蛋白激酶CPIPIPPIP2IP3-从内质网和液泡释放Ca2+,激素受体PIP2磷脂酶CPKCDAGG蛋白IP3-细胞反应Ca2+IP3敏感通道结合态IP3细胞反应内质网或液泡Ca2+细胞内信号转导的双信使系统,钝化蛋白,活化蛋白,蛋白激酶nNTPnNDP蛋白质蛋白质-nPinPiH2O蛋白磷酸酶,信号转导中的蛋白质可逆磷酸化,蛋白激酶(proteinkinase,PK)蛋白激酶是一个大家族,植物中约有2%-3%的基因编码蛋白激酶。根据磷酸化靶蛋白的氨基酸残基的种类不同,蛋白激酶有丝氨酸/苏氨酸激酶、酪氨酸激酶和组氨酸激酶等三类,它们分别将底物蛋白质的丝氨酸/苏氨酸、酪氨酸和组氨酸残基磷酸化。有的蛋白激酶具有双重底物特异性,既可使丝氨酸或苏氨酸残基磷酸化,又可使酪氨酸残基磷酸化,举例1:钙依赖型蛋白激酶(CDPKs)植物细胞中的一个蛋白激酶家族,大豆、玉米、胡萝卜、拟南芥等植物中都存在蛋白激酶。从拟南芥中已克隆了10种左右CDPK基因,机械刺激、激素和胁迫都可引起CDPK基因表达。现已发现,被CDPKs磷酸化的靶蛋白有质膜ATP酶、离子通道、细胞骨架成分等。,自身抑制域(31a.a)NC蛋白激酶催化域钙调素样结构域(共508个氨基酸),CDPK-的结构示意图,CaM和CDPK的结构比较,举例2:类受体蛋白激酶(receptor-likeproteinkinase,RLKs)植物中的RLKs属于丝氨酸/苏氨酸激酶类型,由胞外结构区)、跨膜螺旋区及胞内蛋白激酶催化结构区三部分组成。根据胞外结构区的不同,将RLKs分为三类:S受体激酶,这类RLKs在胞外具有一段被称为S-结构域的结构域,与调节油菜自交不亲和的S-糖蛋白的氨基酸序列同源。富含亮氨酸受体激酶,这类RLKs的胞外结构域中有重复出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论