已阅读5页,还剩59页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.,运输问题模型,杭州电子科技大学,数学教研室,杭州电子科技大学,沈灏二0一0年四月,.,运输问题的一般描述,设某种物资有m个产地A1,A2,Am,和n个销地B1,B2,Bn,其中Ai的产量为ai,Bj的销量为bj,产地Ai运往销地Bj的单位运价Cij,i=1,2,m;j=1,2,n.求尽可能满足销地需求且总费用最小的运输方案。,.,运输问题的数学模型可以分以下3种情况讨论:1.产销平衡问题2.销大于产问题产大于销问题,解:设产地Ai运往销地Bj的运量为,.,1.产销平衡问题的数学模型,产销平衡时,各个产地的物资总和正好满足所有销地的需求,运输问题的数学模型为,.,.,2.销大于产问题的数学模型,销大于产时,各个销地的需求不一定能够得到满足,运输问题的数学模型为,.,.,2.产大于销问题的数学模型,销大于产时,各个销地的需求一定能够得到满足,但各个产地的物资不一定全部运走。运输问题的数学模型为,.,.,运输问题本质是一个线性规划问题,运输问题变量比较多,系数矩阵为0-1矩阵,其中大部分元素为零。计算运输问题我们有比单纯形法更好的专门求解运输问题的算法。,.,产销平衡运输问题的求解,定理产销平衡运输问题一定存在最优解。,.,产销平衡运输问题的Lingo模型,MODEL:sets:row/1.m/:a;arrange/1.n/:b;link(row,arrange):c,x;endsetsdata:a=a(1)a(2)a(m);b=b(1)b(2)b(n);,.,C=c(1,1)c(1,2)c(1,n),c(2,1)c(2,2)c(2,n),c(m,1)c(m,2)c(m,n);enddataOBJmin=sum(link(i,j):c(i,j)*x(i,j);for(row(i):sum(arrange(j):x(i,j)=a(i););for(arrange(j):sum(row(i):x(i,j)=b(j););for(link(i,j):x(i,j)=0;);END,.,产销不平衡运输问题也有类似的Lingo模型,.,产销平衡运输问题的初始解,1.西北角法在运价表的西北角选择运量和销量中的较小数作为运量(初始基变量),每确定一个初始基变量后,划去需求变成零的剩余列元素或划去运量变成零的剩余行元素。,.,.,.,.,.,.,填上x33=1后,自然少去一列(第3列),这时不要再去掉第3行。,注意到每填一个数据恰好减少一行或一列。,.,.,总共填写m+n个数据,填上去的m+n个数据为基变量,.,产销平衡运输问题的初始解,2.最小元素法选择运价表中最小运价,运量和销量中的较小数作为运量(初始基变量),每确定一个初始基变量后,划去需求变成零的剩余列元素或划去运量变成零的剩余行元素。,.,.,.,.,.,.,填上x14=4后,第4列自然被去掉,记住每填一个数据减少一行或一列。,.,.,3.位势法求检验数,对每个基变量xij,计算ui和vj,使ui+vj=cij其中u1=0,.,.,.,.,再计算非基变量检验数,ij=cij-(ui+vj),.,.,11=-4x11每增加一个单位,目标函数可以减少4个单位。,目标可以减少,说明当前解不是最优解,.,闭回路法调整,选x11进基,找到闭回路x11x144-x21x242+3-,.,闭回路法调整,为了保证所有xij非负,x11最多增加3。取x11=3x11+3x144-3x21x242+33-3,.,.,重新计算检验数,.,.,.,22=-1x22每增加一个单位,目标函数可以减少1个单位。,目标可以减少,说明当前解不是最优解,.,闭回路法调整,选x22进基,找到闭回路x125-x141+x22+x245-,.,X22最多增加5,x125-5x141+5x22+5x245-5,.,X22进基,x12和x24经过调整同时变成零。但是要注意只有一个变量出基。,例如:令x12出基得调整后的运输表为:,.,.,重新计算检验数,.,.,.,.,所有非基变量检验数均非负,当前解为最优解,最优解为:X11*=3,x14*=6,x22*=5,x32*=3,x33*=4,其余xij*=0最优目标值为Z*=32+67+53+34+42=83,.,运输问题数学模型的应用实例,设某制造企业根据合同要求,从当年起需连续三年在年末提供3套型号规格相同的大型设备,已知该厂的生产能力及生产成本如下表所示:,.,生产能力与生产成本表,年度正常生产可加班生产可正常生产完成设备数完成设备数成本(万)第一年23500第二年42600第三年13550设加班生产情况下每套设备成本比正常生产时高70万元,每套设备不及时交货积压一年的维护费用为40万元。该厂现库存有2套设备,希望第三年末完成合同要求后还能储存1台设备,问如何安排生产,才能使总成本最低。,.,解:设xj为初始存货用于第j年交货的设备数,yij为第i年正常生产用于第j年交货的设备数,zij为第i年加班生产用于第j年交货的设备数,cj为初始库存设备第j年交货时每台设备维护费,aij为第i年正常生产到第j年交货的每台设备成本费,bij为第i年加班生产到第j年交货的每台设备成本费。上述生产计划问题的数学模型为:,.,.,记A为正常生产时的费用矩阵,.,B为加班生产时的费用矩阵,C=(0,40,80),.,生产计划问题的Lingo模型为,MODEL:sets:row/1,2,3/;arrange/1,2,3/:c,x;link(row,arrange):a,b,y,z;Endsetsdata:c=0,40,80;a=500,540,580,0,600,640,0,0,550;b=570,610,650,0,670,710,0,0,620;enddata,.,OBJmin=sum(arrange(j):c(j)*x(j)+sum(link(i,j):a(i,j)*y(i,j)+sum(link(i,j):b(i,j)*z(i,j);sum(arrange(j):x(j)=2;sum(arrange(j):y(1,j)=2;sum(arrange(j):z(1,j)=3;y(2,2)+y(2,3)=4;z(2,2)+z(2,3)=2;y(3,3)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025内蒙古赤峰翁牛特旗富兴投资管理有限公司所属子公司员工招聘人员及相关笔试历年常考点试题专练附带答案详解2套试卷
- 2025浙江宁波甬山人力资源服务有限公司招聘拟录用笔试历年参考题库附带答案详解
- 2025江西吉安遂川县城控人力资源管理有限公司招聘施工安全员2人笔试历年参考题库附带答案详解
- 2025年广西林业集团有限公司公开招聘22人(第三批)笔试历年参考题库附带答案详解
- 2025年6月山东临沂高新控股集团有限公司三级子公司招聘管理人员笔试历年参考题库附带答案详解
- 2025中铁设计校园招聘笔试历年参考题库附带答案详解
- 2025东方电气(成都)氢燃料电池科技有限公司招聘2人笔试历年参考题库附带答案详解
- 绿色金融投资与经济增长动力-洞察及研究
- 2025年及未来5年中国汽车变速箱行业发展潜力预测及投资战略、数据研究报告
- 2025年及未来5年中国摩托车离合器行业发展监测及投资战略研究报告
- 化学武器及其防护课件
- 2026步步高六册同步物理必修3-第十一章 1 电源和电流
- 血液净化护士学习成果汇报
- 加急物料管理办法
- 宋词词牌名由来教学课件
- 医院危化品安全知识培训
- 寺院民主委员会管理办法
- 女性成长培训课件
- 小学生科技教育实施路径
- 科研设备采购管理制度
- 肛肠疾病业务学习
评论
0/150
提交评论