已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十四章 一次函数集体备课191 变量与函数备课人:杨云海,杨映铭,姚惠,吴峰 课题1911 变量(1课时) 教学目标 (一)教学知识点 认识变量、常量 学会用含一个变量的代数式表示另一个变量 (二)能力训练要求 经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己观点 逐步感知变量间的关系 (三)情感与价值观要求 积极参与数学活动,对数学产生好奇心和求知欲 形成实事求是的态度以及独立思考的习惯 教学重点 认识变量、常量 用式子表示变量间关系 教学难点 用含有一个变量的式子表示另一个变量 教学方法 引导、探索法 教具准备 多媒体演示 教学过程 提出问题,创设情境 情景问题:一辆汽车以60千米小时的速度匀速行驶,行驶里程为s千米行驶时间为t小时 请同学们根据题意填写下表:t/时12345s/千米 在以上这个过程中,变化的量是_变变化的量是_ 试用含t的式子表示s 通过本节课的学习,相信大家一定能够解决这些问题 导入新课 师我们首先来思考上面的几个问题,可以互相讨论一下,然后回答 生回答, 师很好!谢谢你正确的阐述 这种问题反映了匀速行驶的汽车所行驶的里程随行驶时间的变化过程其实现实生活中有好多类似的问题,都是反映不同事物的变化过程,其中有些量的值是按照某种规律变化,其中有些量的是按照某种规律变化的,如上例中的时间t、里程s,有些量的数值是始终不变的,如上例中的速度60千米小时 活动一 活动内容设计: 每张电影票售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张三场电影的票房收入各多少元设一场电影售票x张,票房收入y元怎样用含x的式子表示y? 在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律如果弹簧原长10cm,每1kg重物使弹簧伸长05cm,怎样用含有重物质量m的式子表示受力后的弹簧长度? 教师活动: 引导学生通过合理、正确的思维方法探索出变化规律 学生活动: 在教师的启发引导下,经历尝试运算、猜想探究、归纳总结及验证等过程得到正确的结论 活动结论: 1、 关系式:y=10x 2、 关系式:L=05m+10 师通过上述活动,我们清楚地认识到,要想寻求事物变化过程的规律,首先需确定在这个过程中哪些量是变化的,而哪些量又是不变的在一个变化过程中,我们称数值发生变化的量为变量(variable),那么数值始终不变的量称之为常量(constant)如上述两个过程中,售出票数x、票房收入y;重物质量m,弹簧长度L都是变量而票价10元,弹簧原长10cm都是常量 随堂练习 购买一些铅笔,单价02元支,总价y元随铅笔支数x变化,指出其中的常量与变量,并写出关系式 一个三角形的底边长5cm,高h可以任意伸缩写出面积随h变化关系式,并指出其中常量与变量 课时小结 本节课从现实问题出发,找出了寻求事物变化中变量之间变化规律的一般方法步骤它对以后学习函数及建立函数关系式有很重要意义 确定事物变化中的变量与常量 尝试运算寻求变量间存在的规律 利用学过的有关知识公式确定关系区 课后作业课后思考题、练习题1912 函数 (2课时) 教学目标(一)教学知识点:经过回顾思考认识变量中的自变量与函数 进一步理解掌握确定函数关系式会确定自变量取值范围(二)能力训练要求:经历回顾思考过程、提高归纳总结概括能力通过从图或表格中寻找两个变量间的关系,提高识图及读表能力,体会函数的不同表达方式(三)情感与价值观要求:积极参与活动、提高学习兴趣形成合作交流意识及独立思考的习惯 教学重点:进一步掌握确定函数关系的方法确定自变量的取值范围 教学难点:认识函数、领会函数的意义 教学方法:回顾思考探索交流归纳总结 教具准备:多媒体演示 教学过程 提出问题,创设情境 我们来回顾一下上节课所研究的每个问题中是否各有两个变化?同一问题中的变量之间有什么联系?也就是说当其中一个变量确定一个值时,另一个变量是否随之确定一个值呢? 这将是我们这节研究的内容 导入新课 师我们首先回顾一下上节活动一中的两个问题思考它们每个问题中是否有两个变量,变量间存在什么联系 由以上回顾我们可以归纳这样的结论: 上面每个问题中的两个变量互相联系,当其中一个变量取定一个值时,另一个变量随之就有唯一确定的值与它对应 其实,在一些用图或表格表达的问题中,也能看到两个变量间的关系我们来看下面两个问题,通过观察、思考、讨论后回答:(1)下图是体检时的心电图其中横坐标x表示时间,纵坐标y表示心脏部位的生物电流,它们是两个变量在心电图中,对于x的每个确定的值,y都有唯一确定的对应值吗? (2)在下面的我国人口数统计表中,年份与人口数可以记作两个变量x与y,对于表中每个确定的年份(x),都对应着个确定的人口数(y)吗?中国人口数统计表年份人口数亿19841034198911061994117619991252 师一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量(independentvariable),y是x的函数(function)如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值 据此我们可以认为:上节情景问题中时间t是自变量,里程s是t的函数t=1时的函数值s=60,t=2时的函数值s=120,t=25时的函数值s=150,同样地,在以上心电图问题中,时间x是自变量,心脏电流y是x的函数;人口数统计表中,年份x是自变量,人口数y是x的函数当x=1999时,函数值y=1252亿 从上面的学习中可知许多问题中的变量之间都存在函数关系 活动一 活动内容设计: 一辆汽车油箱现有汽油50L,如果不再加油,那么油箱中的油量y(L)随行驶里程x(km)的增加而减少,平均耗油量为01L/km 写出表示y与x的函数关系式 指出自变量x的取值范围 汽车行驶200km时,油桶中还有多少汽油? 设计意图: 通过这一活动,加深函数意义理解,熟练掌握函数关系式确立的办法学会确定自变量的取值范围,并能通过关系式解决一些简单问题 教师活动: 注意学生在活动中对函数意义的认识水平,引导其总结归纳自变量取值范围的方法 师通过这个活动,我们在巩固函数意义理解认识及确立函数关系式基础上,又学会如何确定自变量取值范围和求函数值的方法知道了自变量取值范围的确定,不仅要考虑函数关系式的意义,而且还要注意问题的实际意义 随堂练习 P99 课时小结 本节课我们通过回顾思考、观察讨论,认识了自变量、函数及函数值的概念,并通过两个活动加深了对函数意义的理解,学会了确立函数关系式、自变量取值范围的方法,会求函数值,提高了用函数解决实际问题的能力 课后作业 板书设计1112 函数一、自变量、函数及函数值二、自变量取值范围三、课堂练习 1913 函数图象(2课时) 教学目标 (一)教学知识点:学会用列表、描点、连线画函数图象 学会观察、分析函数图象信息(二)能力训练要求:提高识图能力、分析函数图象信息能力体会数形结合思想,并利用它解决问题,提高解决问题能力(三)情感与价值观要求:体会数学方法的多样性,提高学习兴趣认识数学在解决问题中的重要作用从而加深对数学的认识教学重点:函数图象的画法观察分析图象信息教学难点:分析概括图象中的信息教学方法:自主探究、归纳总结教学过程 提出问题,创设情境 我们在前面学习了函数意义,并掌握了函数关系式的确立但有些函数问题很难用函数关系式表示出来,然而可以通过图来直观反映例如用心电图表示心脏生物电流与时间的关系 即使对于能列式表示的函数关系,如果也能画图表示则会使函数关系更清晰 我们这节课就来解决如何画函数图象的问题及解读函数图象信息 导入新课 我们先来看这样一个问题: 正方形的边长x与面积的函数关系是什么?其中自变量x的取值范围是什么?计算并填写下表:x05115225335S 一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象(graph)上图中的曲线即为函数x2(x0)的图象 函数图象可以数形结合地研究函数,给我们带来便利 活动一 活动内容设计:下图是自动测温仪记录的图象,它反映了北京的春季某天气温如何随时间t的变化而变化你从图象中得到了哪些信息? 如有条件,你可以用带有温度探头的计算机(器),测试、记录温度和绘制表示温度变化的图象 教师活动: 引导学生从两个变量的对应关系上认识函数,体会函数意义;可以指导学生找出一天内最高、最低气温及时间;在某些时间段的变化趋势;认识图象的直观性及优缺点;总结变化规律 学生活动: 在教师引导下,积极探寻,合作探究,归纳总结 活动二 活动内容设计: 下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家其中x表示时间,y表示小明离他家的距离 根据图象回答下列问题: 菜地离小明家多远?小明走到菜地用了多少时间? 小明给菜地浇水用了多少时间? 菜地离玉米地多远?小明从菜地到玉米地用了多少时间? 小明给玉米地锄草用了多长时间? 玉米地离小明家多远?小明从玉米地走回家平均速度是多少? 设计意图: 进一步提高识图能力 按要求从图象中挖掘所需信息,并自理信息 教师活动: 引导学生分析图象、寻找图象信息,特别是图象中有两段平行于x轴的线段的意义 学生活动: 在教师引导下,积极思考、大胆参与、探求答案 师我们通过两个活动已学会了如何观察分析图象信息,那么已知函数关系式,怎样画出函数图象呢? 例:在下列式子中,对于x的每个确定的值,y有唯一的对应值,即y是x的函数请画出这些函数的图象 y=x+05 y=(x0) 解:y=x+05 从上式可看出,x取任意实数式子都有意义,所以x的取值范围是全体实数从x的取值范围中选取一些数值,算出y的对应值列表如下:x-3-2-10123y-2.5-1.5-0.50.51.52.53.5 根据表中数值描点(x,y),并用光滑曲线连结这些点 从函数图象可以看出,直线从左向右上升,即当x由小变大时,y=x+05随之增大 y=(x0) 自变量的取值为x0的实数,即正实数 按条件选取自变量值,并计算y值列表:x051152253354y126432.421.715据表中数值描点(x,y)并用光滑曲线连结这些点,就得到图象 从函数图象可以看出,曲线从左向右下降,即当x由小变大时,y随之减小 师我们来总结归纳一下描点法画函数图象的一般步骤,好吗? 第一步:列表在自变量取值范围内选定一些值通过函数关系式求出对应函数值列成表格 第二步:描点在直角坐标系中,以自变量的值为横坐标,相应函数值为纵坐标,描出表中对应各点 第三步:连线按照坐标由小到大的顺序把所有点用平滑曲线连结起来 尝试练习:(1)下图是一种古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度人们根据壶中水面的位置计算时间用x表示时间,y表示壶底到水面的高度下面的哪个图象适合表示y与x的函数关系? (2)a是自变量x取值范围内的任意一个值,过点(a,0)画y轴的平行线,与图中曲线相交下列哪个图中的曲线表示y是x的函数?为什么? (提示:当x=a时,x的函数y只能有一个函数值) 随堂练习1.A(-25,-4),B(1,3)不在函数y=2x-1的图象上,C(25,4)在函数y=2x-1的图象上 (1)这一天内,12时上海北京气温相同 (2)略 (1)x-2-1012y41014(2)从图象中观察,当x0时,y随x的增大而增大当x0) 我们可以用描点法来画出函数L=3a的图象 列表:a1234L36912描点、连线: 随堂练习 甲车速度为20米秒,乙车速度为25米秒现甲车在乙车前面500米,设x秒后两车之间的距离为y米求y随x(0x100)变化的函数解析式,并画出函数图象 解:由题意可知:x秒后两车行驶路程分别是: 甲车为:20x 乙车为:25x 两车行驶路程差为:25x-20x=5x 两车之间距离为:500-5x 所以:y随x变化的函数关系式为: y=500-5x 0x100 用描点法画图:x10203040y450400350300x50607080y250200150100 课时小结 通过本节课学习,我们认识了函数的三种不同的表示方法,并归纳总结出三种表示方法的优缺点,学会根据实际情况和具体要求选择适当的表示方法来解决相关问题,进一步知道了函数三种不同表示方法之间可以转化,为下面学习数形结合的函数做好了准备 课后作业 板书设计1114 函数表示方法一、函数的三种表示方法二、不同表示方法的优缺点三、不同表示方法的具体选择四、随堂练习教后反思: 142 一次函数 课时安排:4课时 从容说课 一次函数是函数学习的基础掌握一次函数的意义、特点、应用对以后进一步学习函数有着非常重要的意义毛 本节课首先从最简单的正比例函数入手从正比例函数的定义、函数关系式、图象及其特点、性质引入一次函数的特点及性质,逐步掌握一次函数的线性性质特点,并会利用特点使一次函数的不同表达方法相互转化根据实际问题、具体要求选用适当的表示方法来解决相关问题 本节的重点是理解掌握正比例函数、一次函数的解析式、图象特点及性质,进一步学会不同表达方法间的转化,提高解决实际问题的能力,使学生感到数学与现实世界的联系,鼓励他们有条理地表达和思考,培养其学习的兴趣1421 正比例函数2课时 教学目标 (一)教学知识点 认识正比例函数的意义 掌握正比例函数解析式特点 理解正比例函数图象性质及特点 能利用所学知识解决相关实际问题 (二)能力训练要求 经历思考、探究过程、发展总结归纳能力,能有条理地、清晰地阐述自己的观点 体验数形之间联系,逐步学会利用数形结合思想分析解决有关问题 体会解决问题策略的多样性,发展实践能力与创新意识 (三)情感与价值观要求 积极参与数学活动,对其产生好奇心和求知欲 形成合作交流、独立思考的学习习惯 教学重点 理解正比例函数意义及解析式特点 掌握正比例函数图象的性质特点 能根据要求完成转化,解决问题 教学难点 正比例函数图象性质特点的掌握 教学方法 探究交流,归纳总结 教具准确 多媒体演示 教学过程 提出问题,创设情境 一九九六年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环个月零周后人们在256万千米外的澳大利亚发现了它 这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)? 这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系? 这只燕鸥飞行个半月的行程大约是多少千米? 我们来共同分析: 一个月按30天计算,这只燕鸥平均每天飞行的路程不少于: 25600(304+7)200(km) 若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数函数解析式为: y=200x(0x127) 这只燕鸥飞行个半月的行程,大约是x=45时函数y=200x的值即 y=20045=9000(km) 以上我们用y=200x对燕鸥在个月零周的飞行路程问题进行了刻画尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型 类似于y=200x这种形式的函数在现实世界中还有很多它们都具备什么样的特征呢?我们这节课就来学习 导入新课 首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点? 圆的周长L随半径r的大小变化而变化 铁的密度为78g/cm3铁块的质量m(g)随它的体积V(cm3)的大小变化而变化 每个练习本的厚度为05cm一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化 冷冻一个0的物体,使它每分钟下降2物体的温度()随冷冻时间t(分)的变化而变化 我们观察这些函数关系式,不难发现这些函数都是常数与自变量乘积的形式,和y=200x的形式一样 一般地,形如y=kx(k是常数,k0)的函数,叫做正比例函数(proportional func-tion),其中k叫做比例系数 我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢? 活动一 活动内容设计: 画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律 y=2x y=-2x 活动设计意图: 通过活动,了解正比例函数图象特点及函数变化规律,让学生自己动手、动口、动脑,经历规律发现的整个过程,从而提高各方面能力及学习兴趣 教师活动: 引导学生正确画图、积极探索、总结规律、准确表述 学生活动: 利用描点法正确地画出两个函数图象,在教师的引导下完成函数变化规律的探究过程,并能准确地表达出,从而加深对规律的理解与认识 活动过程与结论:函数y=2x中自变量x可以是任意实数列表表示几组对应值:x-3-2-10123y-6-4-20246 画出图象如图(1)y=-2x的自变量取值范围可以是全体实数,列表表示几组对应值:x-3-2-10123y6420-2-4-6 画出图象如图(2) 两个图象的共同点:都是经过原点的直线 不同点:函数y=2x的图象从左向右呈上升状态,即随着x的增大y也增大;经过第一、三象限函数y=-2x的图象从左向右呈下降状态,即随x增大y反而减小;经过第二、四象限 尝试练习: 在同一坐标系中,画出下列函数的图象,并对它们进行比较y=x y=-xx-6-4-20246y=x-3-2-10123Y=-x3210-1-2-3 比较两个函数图象可以看出:两个图象都是经过原点的直线函数y=x的图象从左向右上升,经过三、一象限,即随x增大y也增大;函数y=-x的图象从左向右下降,经过二、四象限,即随x增大y反而减小 师就以上活动及练习的结果,大家可否总结归纳出正比例函数解析式与图象特征之间的规律呢? 生正比例函数y=kx(k是常数,k0)的图象是一条经过原点的直线当x0时,图象经过三、一象限,从左向右上升,即随x的增大y也增大;当k0时,向上平移;b0时,直线y=kx+b由左至右上升;当k0时,y随x增大而增大 当k0时,y随x增大而减小 随堂练习 直线y=2x-3与x轴交点坐标为_,与y轴交点坐标为_,图象经过第_象限,y随x增大而_ 课时小结 本节学习了一次函数的意义,知道了其解析式、图象特征,并学会了简单方法画图象,进而利用数形结合的探究方法寻求出一次函数图象特征与解析式的联系,这使我们对一次函数知识的理解和掌握更透彻,也体会到数学思想在数学研究中的重要性 板书设计1422 一次函数一、一次函数解析式二、一次函数图象特征及画法三、一次函数图象与解析式联系四、随堂练习1423 一次函数应用2课时 教学目标 (一)教学知识点 学会用待定系数法确定一次函数解析式毛 具体感知数形结合思想在一次函数中的应用 利用一次函数知识解决相关实际问题 (二)能力训练目标 经历待定系数法应用过程,提高研究数学问题的技能 体验数形结合,逐步学习利用这一思想分析解决问题 体会解决问题方法多样性,发展创新实践能力 (三)情感与价值观要求 积极参与活动,提高学习兴趣 养成实事求是、具体问题具体分析的习惯 教学重点 待定系数法确定一次函数解析式 灵活运用知识解决相关问题 教学难点 灵活运用有关知识解决相关问题 教学方法 归纳总结 实践应用创新 教具准备 多媒体演示 教学过程 提出问题,创设情境 我们前面学习了有关一次函数的一些知识,掌握了其解析式的特点及图象特征,并学会了已知解析式画出其图象的方法以及分析图象特征与解析式之间的联系规律如果反过来,告诉我们有关一次函数图象的某些特征,能否确定解析式呢?如何利用一次函数知识解决相关实践问题呢? 这将是我们这节课要解决的主要问题,大家可有兴趣? 导入新课 有这样一个问题,大家来分析思考,寻求解决的办法 活动一 活动设计内容: 已知一次函数图象过点(3,5)与(-4,-9),求这个一次函数的解析式 联系以前所学知识,你能总结归纳出一次函数解析式与一次函数图象之间的转化规律吗? 活动设计意图: 通过活动掌握待定系数法在函数中的应用,进而经历思考分析,归纳总结一次函数解析式与图象之间转化规律,增强数形结合思想在函数中重要性的理解 教师活动: 引导学生分析思考解决由图象到解析式转化的方法过程,从而总结归纳两者转化的一般方法 学生活动: 在教师指导下经过独立思考,研究讨论顺利完成转化过程概括阐述一次函数解析式与图象转化的一般过程 活动过程及结论: 分析:求一次函数解析式,关键是求出k、b值因为图象经过两个点,所以这两点坐标必适合解析式由此可列出关于k、b的二元一次方程组,解之可得 设这个一次函数解析式为y=kx+b 因为y=k+b的图象过点(3,5)与(-4,-9),所以 解之,得故这个一次函数解析式为y=2x-1。结论: 师像这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法 尝试练习: 已知一次函数y=kx+2,当x=5时y的值为4,求k值 已知直线y=kx+b经过点(9,0)和点(24,20),求k、b值 解答: 当x=5时y值为4 即4=5k+2,k= 由题意可知: 解之得, 师下面我们来学习一次函数的应用 例小芳以200米分的速度起跑后,先匀加速跑5分钟,每分提高速度20米分,又匀速跑10分钟试写出这段时间里她跑步速度y(米分)随跑步时间x(分)变化的函数关系式,并画出图象 分析:本题y随x变化的规律分成两段:前5分钟与后10分钟写y随x变化函数关系式时要分成两部分画图象时也要分成两段来画,且要注意各自变量的取值范围解:y= 师我们把这种函数叫做分段函数在解决分析函数问题时,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际 活动二 活动内容设计: 城有肥料200吨,城有肥料300吨,现要把这些肥料全部运往、两乡从城往、两乡运肥料费用分别为每吨20元和25元;从城往、两乡运肥料费用分别为每吨15元和24元现乡需要肥料240吨,乡需要肥料260吨怎样调运总运费最少? 活动设计意图: 通过这一活动让学生逐步学会应用有关知识寻求出解决实际问题的方法,提高灵活运用能力 教师活动: 引导学生讨论分析思考从影响总运费的变量有哪些入手,进而寻找变量个数及变量间关系,探究出总运费与变量间的函数关系,从而利用函数知识解决问题 学生活动: 在教师指导下,经历思考、讨论、分析,找出影响总运费的变量,并认清它们之间的关系,确定函数关系,最终解决实际问题 活动过程及结论: 通过分析思考,可以发现:,运肥料共涉及4个变量它们都是影响总运费的变量然而它们之间又有一定的必然联系,只要确定其中一个量,其余三个量也就随之确定这样我们就可以设其中一个变量为x,把其他变量用含x的代数式表示出来: 若设x吨,则: 由于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 影像科检查项目基于成本的阶梯式定价策略
- 新生儿窒息家庭预防与应急处理指南
- 产科护理技能与护理团队建设
- 医疗急救人员礼仪
- 医疗行业跨界融合与创新
- 局部放疗与免疫治疗协同效应的动物模型
- 医疗机器人辅助手术技术进展
- 叩背排痰临床护理操作规范与要点
- 人工智能技术在重症急救护理中的应用前景
- 内痔套扎术后伤口愈合护理:促进组织修复的秘诀
- (完整文本)乌有先生传(原文+注释+译文)
- 儿童流感的预防与治疗
- 三年级数学专项思维训练习题11套原卷+答案解析
- 事故油池基坑开挖专项施工方案
- 2021级数据科学与大数据技术专业培养方案(本科)
- 《量子力学》全本课件
- 《我弥留之际》读书笔记思维导图PPT模板下载
- 病毒性肝炎的免疫学检查
- 环境催化-课件1
- 旭辉地产年度品牌整合传播规划方案
- GB/T 27924-2011工业货架规格尺寸与额定荷载
评论
0/150
提交评论