




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2015-2016学年江苏省连云港市八年级(上)期中数学试卷一、选择题(共8小题,每小题3分,满分24分)1下列图形是几家电信公司的标志,其中是轴对称图形的是( )ABCD2如图,ABC中,AB=AC,D为BC的中点,以下结论:(1)ABDACD; (2)ADBC;(3)B=C; (4)AD是ABC的角平分线其中正确的有( )A1个B2个C3个D4个3等腰三角形两边分别为5和10,那么它的周长为( )A20B25C15D20或254如图,ABC中,AB=AC=10,BC=8,AD平分BAC交BC于点D,点E为AC的中点,连接DE,则CDE的周长为( )A20B14C13D125如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )ASSSBSASCAASDASA6如图,两条笔直的公路l1、l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A、B、D已知AB=BC=CD=DA=5公里,村庄C到公路l1的距离为4公里,则村庄C到公路l2的距离是( )A3kmB4kmC5kmD6km7已知一直角三角形的木板,三边的平方和为1800cm2,则斜边长为( )A30cmB80cmC90cmD120cm8如图,A,B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且ABC为等腰三角形,满足条件的点C有( )A6个B7个C8个D9个二、填空题(每小题3分)9在“线段、圆、等边三角形、正方形、角”这五个图形中,对称轴最多的图形是_10已知三角形三边长分别是6,8,10,则此三角形的面积为_11如图,若OADOBC,且O=65,C=20,则OAD=_度12如图所示,点P为AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则PMN的周长为_13如图,从电线杆离地面6m处向地面拉一条长10m的固定缆绳,这条缆绳在地面的固定点距离电线杆底部有_m14如图,1=2,要使ABEACE,还需添加一个条件是_(填上你认为适当的一个条件即可)15如图,已知ABC和DBE均为等边三角形,连接AD,CE,若BAD=36,那么ACE=_16如图,ACB=90,AD是CAB的平分线,BC=12,CD=4.5,则AC=_三、解答题17已知O及其边上两点A和B(如图),用直尺和圆规作一点P,使点P到O的两边的距离相等,且到点A、B的距离也相等(保留作图痕迹)18方格纸中每个小方格都的边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”(1)在图1中确定格点D,并画出一个以A、B、C、D为顶点的四边形,使其为轴对称图形;(2)在图2中画一个格点正方形,使其面积等于10;(3)直接写出图3中FGH的面积是_19已知:如图,AB=AE,1=2,B=E求证:BC=ED20等腰ABC中,腰长AB=8cm,BC=5cm,CBD=18,AB的垂直平分线MN交AC于点D(1)求BCD的周长;(2)求A的度数21如图,一个特大型设备人字梁,工人师傅要检查人字梁的AB和AC是否相等,但是他直接测量不方便,身边只有一个刻度尺(长度远远不够)它是这样操作的:分别在BA和CA上取BE=CG;在BC上取BD=CF;量出DE的长a米,FG的长b米,如果a=b,则说明AB和AC是相等的,他的这种做法合理吗?为什么?22如图,已知在ABC中,CDAB于D,AC=20,BC=15,DB=9(1)求DC的长;(2)判断ABC的形状,并说明理由23如图,ABC是一张直角三角形纸片,其中C=90,BC=8cm,AB=10cm,将纸片折叠,使点A恰好落在BC的中点D处,折痕为MN(1)求DC的长;(2)求AM的长24已知,如图,AC平分BAD,CEAB于E,CDAD于F,且BC=DC(1)BE与DF是否相等?请说明理由;(2)若DF=1,AD=3,求AB的长;(3)若ABC的面积是23,ADC面积是18,直接写出BEC的面积25如图1,点P、Q分别是等边ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M(1)求证:ABQCAP;(2)当点P、Q分别在AB、BC边上运动时,QMC变化吗?若变化,请说明理由;若不变,求出它的度数(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则QMC变化吗?若变化,请说明理由;若不变,则求出它的度数26(14分)(1)问题发现:如图1,ACB和DCE均为等边三角形,点A,D,E在同一直线上,连接BE,则AEB的度数为_,线段AD、BE之间的关系_(2)拓展探究:如图2,ACB和DCE均为等腰直角三角形,ACB=DCE=90,点A、D、E在同一直线上,CM为DCE中DE边上的高,连接BE请判断AEB的度数,并说明理由;当CM=5时,AC比BE的长度多6时,求AE的长2015-2016学年江苏省连云港市八年级(上)期中数学试卷一、选择题(共8小题,每小题3分,满分24分)1下列图形是几家电信公司的标志,其中是轴对称图形的是( )ABCD【考点】轴对称图形 【分析】根据轴对称图形与中心对称图形的概念求解【解答】解:A、不是轴对称图形,也不是中心对称图形故错误;B、不是轴对称图形,也不是中心对称图形故错误;C、是轴对称图形,也是中心对称图形故正确;D、不是轴对称图形,是中心对称图形故错误故选C【点评】此题考查轴对称图形问题,掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180后与原图重合2如图,ABC中,AB=AC,D为BC的中点,以下结论:(1)ABDACD; (2)ADBC;(3)B=C; (4)AD是ABC的角平分线其中正确的有( )A1个B2个C3个D4个【考点】等腰三角形的性质 【分析】由“三线合一”可知(2)(4)正确,由等边对等角可知(3)正确,且容易证明ABDACD,可得出答案【解答】解:AB=AC,B=C,(3)正确,D为BC的中点,ADBC,BAD=CAD,(2)(4)正确,在ABD和ACD中ABDACD(SSS),(1)正确,正确的有4个,故选D【点评】本题主要考查等腰三角形的性质,掌握等腰三角形底边上的中线、底边上的高、顶角的角平分线相互重合是解题的关键3等腰三角形两边分别为5和10,那么它的周长为( )A20B25C15D20或25【考点】等腰三角形的性质;三角形三边关系 【分析】分别从若腰长为5,底边长为10,与若腰长为10,底边长为5,去分析求解即可求得答案【解答】解:若腰长为5,底边长为10,则5+5=10,不能组成三角形,舍去;若腰长为10,底边长为5,则它的周长为:10+10+5=25故选B【点评】此题考查了等腰三角形的性质以及三角形三边关系注意利用分类讨论思想求解是关键4如图,ABC中,AB=AC=10,BC=8,AD平分BAC交BC于点D,点E为AC的中点,连接DE,则CDE的周长为( )A20B14C13D12【考点】直角三角形斜边上的中线;等腰三角形的性质 【分析】根据AB=AC,可知ABC为等腰三角形,由等腰三角形三线合一的性质可得ADBC,AD为ABC的中线,故CD=BC,ADC=90,又因为点E为AC的中点,可得DE=,从而可以得到CDE的周长【解答】解:AB=AC,ABC是等腰三角形又AD平分BAC,ADBC,AD是ABC的中线,点E为AC的中点ADC=90,AC=2DE,AE=ECAB=AC=10,BC=8,DE=5,CD=4,CE=5CDE的周长为:DE+EC+CD=5+5+4=14故选项A错误,故选项B正确,故选项C错误,故选项D错误故选B【点评】本题考查三角形的周长,等腰三角形的相关性质,直角三角形斜边上的中线等于斜边的一半,关键是正确分析题目,从中得出需要的信息5如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )ASSSBSASCAASDASA【考点】全等三角形的应用 【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形故选D【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键6如图,两条笔直的公路l1、l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A、B、D已知AB=BC=CD=DA=5公里,村庄C到公路l1的距离为4公里,则村庄C到公路l2的距离是( )A3kmB4kmC5kmD6km【考点】菱形的性质;角平分线的性质 【分析】首先连接AC,过点C作CEl2于E,作CFl1于F,由AB=BC=CD=DA,即可判定四边形ABCD是菱形,由菱形的性质,可得AC平分BAD,然后根据角平分线的性质,即可求得答案【解答】解:连接AC,过点C作CEl2于E,作CFl1于F,村庄C到公路l1的距离为4千米,CF=4千米,AB=BC=CD=DA,四边形ABCD是菱形,AC平分BAD,CE=CF=4千米,即C到公路l2的距离是4千米故选B【点评】此题考查了菱形的判定与性质以及角平分线的性质解题的关键是正确作出辅助线,得到C到公路l2的距离7已知一直角三角形的木板,三边的平方和为1800cm2,则斜边长为( )A30cmB80cmC90cmD120cm【考点】勾股定理 【分析】先求出斜边的平方,进而可得出结论【解答】解:设直角三角形的斜边长为x,三边的平方和为1800cm2,x=900cm2,解得x=30cm故选A【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键8如图,A,B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且ABC为等腰三角形,满足条件的点C有( )A6个B7个C8个D9个【考点】等腰三角形的判定 【专题】网格型【分析】根据已知条件,可知按照点C所在的直线分两种情况:点C以点A为标准,AB为底边;点C以点B为标准,AB为等腰三角形的一条边【解答】解:点C以点A为标准,AB为底边,符合点C的有5个;点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个所以符合条件的点C共有9个故选D【点评】此题考查了等腰三角形的判定来解决特殊的实际问题,其关键是根据题意,结合图形,再利用数学知识来求解注意数形结合的解题思想二、填空题(每小题3分)9在“线段、圆、等边三角形、正方形、角”这五个图形中,对称轴最多的图形是圆【考点】轴对称图形 【分析】根据轴对称图形的概念求解:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴【解答】解:线段是轴对称图形,有2条对称轴;圆是轴对称图形,有无数条对称轴;等边三角形是轴对称图形,有3条对称轴;正方形是轴对称图形,有四条对称轴;角是轴对称图形,有1条对称轴;故在“线段、圆、等边三角形、正方形、角”这五个图形中,对称轴最多的图形是圆故答案为:圆【点评】此题主要考查了掌握轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合同时要熟记一些常见图形的对称轴条数10已知三角形三边长分别是6,8,10,则此三角形的面积为24【考点】勾股定理的逆定理 【专题】计算题【分析】根据三角形三边长,利用勾股定理逆定理求证此三角形是直角三角形,然后即可求得面积【解答】解:62+82=102,此三角形为直角三角形,此三角形的面积为:68=24故答案为:24【点评】此题主要考查学生对勾股定理逆定理的理解和掌握,解答此题的关键是利用勾股定理逆定理求证此三角形是直角三角形11如图,若OADOBC,且O=65,C=20,则OAD=95度【考点】全等三角形的性质 【分析】运用全等求出D=C,再用三角形内角和即可求【解答】解:OADOBC,OAD=OBC;在OBC中,O=65,C=20,OBC=180(65+20)=18085=95;OAD=OBC=95故答案为:95【点评】考查全等三角形的性质,三角形内角和及推理能力,本题比较简单12如图所示,点P为AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则PMN的周长为15【考点】轴对称的性质 【分析】P点关于OA的对称是点P1,P点关于OB的对称点P2,故有PM=P1M,PN=P2N【解答】解:P点关于OA的对称是点P1,P点关于OB的对称点P2,PM=P1M,PN=P2NPMN的周长为PM+PN+MN=MN+P1M+P2N=P1P2=15故答案为:15【点评】本题考查轴对称的性质对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等13如图,从电线杆离地面6m处向地面拉一条长10m的固定缆绳,这条缆绳在地面的固定点距离电线杆底部有8m【考点】勾股定理的应用 【分析】因为电线杆,地面,缆绳正好构成直角三角形,所以利用勾股定理解答即可【解答】解:如图所示,AB=6m,AC=10m,根据勾股定理可得:BC=8m故这条缆绳在地面的固定点距离电线杆底部8m【点评】本题考查的是勾股定理在实际生活中的运用,解答此题的关键是构造出直角三角形14如图,1=2,要使ABEACE,还需添加一个条件是B=C(填上你认为适当的一个条件即可)【考点】全等三角形的判定 【专题】开放型【分析】根据题意,易得AEB=AEC,又AE公共,所以根据全等三角形的判定方法容易寻找添加条件【解答】解:1=2,AEB=AEC,又 AE公共,当B=C时,ABEACE(AAS);或BE=CE时,ABEACE(SAS);或BAE=CAE时,ABEACE(ASA)【点评】此题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角15如图,已知ABC和DBE均为等边三角形,连接AD,CE,若BAD=36,那么ACE=96【考点】全等三角形的判定与性质;等边三角形的性质 【分析】根据SAS证明ABD与CBE全等,再利用全等三角形的性质解答即可【解答】解:ABC和DBE均为等边三角形,AB=BC,BD=BE,ABC=BBE=60,ABD=CBE,在ABC和DBE中,ABCDBE(SAS),BCE=BAD=36,ACE=60+36=96故答案为:96【点评】此题考查全等三角形的判定和性质,关键是根据SAS证明ABD与CBE全等16如图,ACB=90,AD是CAB的平分线,BC=12,CD=4.5,则AC=9【考点】角平分线的性质 【分析】过D作DEAB于E,根据角平分线性质求出CD=DE=4.5,根据勾股定理求出BE,根据勾股定理得出关于AC的方程,求出方程的解即可【解答】解:如图:过D作DEAB于E,ACB=90,AD是CAB的平分线,CD=4.5,DE=CD=4.5,AED=DEB=C=90,由勾股定理得:BE=6,由勾股定理得:AE2=AD2DE2,AC2=AD2CD2,AC=AE,在RtACB中,由勾股定理得:AC2+BC2=AB2,即AC2+122=(AC+6)2,解得:AC=9故答案为:9【点评】本题考查了角平分线性质,勾股定理的应用,能根据角平分线性质求出CD=DE和求出关于AC的方程是解此题的关键,注意:角平分线上的点到角两边的距离相等三、解答题17已知O及其边上两点A和B(如图),用直尺和圆规作一点P,使点P到O的两边的距离相等,且到点A、B的距离也相等(保留作图痕迹)【考点】作图复杂作图;角平分线的性质;线段垂直平分线的性质 【分析】作出O的平分线及线段AB的垂直平分线的交点即可【解答】解:如图所示:点P就是所求的点【点评】本题考查了尺规作图,理解角平分线和线段的垂直平分线的性质是关键18方格纸中每个小方格都的边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”(1)在图1中确定格点D,并画出一个以A、B、C、D为顶点的四边形,使其为轴对称图形;(2)在图2中画一个格点正方形,使其面积等于10;(3)直接写出图3中FGH的面积是9【考点】利用轴对称设计图案 【分析】(1)找出点A关于BC的对称点即可;(2)先构造以1和3为直角边的直角三角形,然后以三角形的斜边为边构造正方形即可;(3)构造如图所示的矩形,根据GFH的面积=矩形面积减去三角形直角三角形的面积求解即可【解答】解:(1)如图1所示:(2)如图2所示:(3)如图3所示:FGH的面积=矩形ABHC的面积AFG的面积BGH的面积FCH的面积=56=9故答案为:9【点评】本题主要考查的是勾股定理、轴对称图形的性质,将三角形GEH的面积转化为一个矩形与三个直角三角形的面积的差是解题的关键19已知:如图,AB=AE,1=2,B=E求证:BC=ED【考点】全等三角形的判定与性质 【专题】证明题【分析】由1=2可得:EAD=BAC,再有条件AB=AE,B=E可利用ASA证明ABCAED,再根据全等三角形对应边相等可得BC=ED【解答】证明:1=2,1+BAD=2+BAD,即:EAD=BAC,在EAD和BAC中,ABCAED(ASA),BC=ED【点评】此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定方法:SSS、SAS、ASA、AAS、HL全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具20等腰ABC中,腰长AB=8cm,BC=5cm,CBD=18,AB的垂直平分线MN交AC于点D(1)求BCD的周长;(2)求A的度数【考点】线段垂直平分线的性质;等腰三角形的性质【分析】(1)根据线段垂直平分线性质求出AD=BD,即可求出BCD的周长=AC+BC,代入求出即可;(2)设A=x,根据等腰三角形性质推出ABD=A=x,ABC=C=(x+18),得出关于x的方程,求出方程的解即可【解答】解:(1)AB的垂直平分线MN交AC于点D,AD=BD,AB=AC=8cm,BC=5cm,BCD的周长为BC+BD+CD=BC+AD+DC=BC+AC=8cm+5cm=13cm;(2)设A=x,AD=BD,ABD=A=x,AB=AC,DCB=18,ABC=C=(x+18),A+ABC+C=180,x+x+18+x+18=180,x=48,即A=48【点评】本题考查了解一元一次方程组,等腰三角形性质,三角形内角和定理,线段垂直平分线性质的应用,能求出AD=BD和得出关于x的方程是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等21如图,一个特大型设备人字梁,工人师傅要检查人字梁的AB和AC是否相等,但是他直接测量不方便,身边只有一个刻度尺(长度远远不够)它是这样操作的:分别在BA和CA上取BE=CG;在BC上取BD=CF;量出DE的长a米,FG的长b米,如果a=b,则说明AB和AC是相等的,他的这种做法合理吗?为什么?【考点】全等三角形的应用;等腰三角形的判定 【分析】利用全等三角形的判定方法得出BDECFG(SSS),进而得出答案【解答】解:合理,理由:在BDE和CFG中,BDECFG(SSS),B=C,AB=AC【点评】此题主要考查了全等三角形的应用,根据题意正确得出对应边相等是解题关键22如图,已知在ABC中,CDAB于D,AC=20,BC=15,DB=9(1)求DC的长;(2)判断ABC的形状,并说明理由【考点】勾股定理 【分析】(1)在RtBCD中利用勾股定理求得CD的长即可;(2)在RtADC中,由勾股定理求出AD的长,得出AB的长,利用勾股定理的逆定理即可判断【解答】解:(1)CDAB,CDB=CDA=90,在RtBCD中,BC=15,BD=9,DC=12;(2)ABC是直角三角形;理由如下:在RtADC中,AC=20,CD=12,AD=16,AB=AD+DB=16+9=25,AB2=252=625,AC2+BC2=202+152=625,AB2=AC2+BC2,ABC是直角三角形【点评】本题考查了勾股定理、勾股定理的逆定理;熟练掌握勾股定理和勾股定理的逆定理,通过运用勾股定理求出AB是解决(2)的关键23如图,ABC是一张直角三角形纸片,其中C=90,BC=8cm,AB=10cm,将纸片折叠,使点A恰好落在BC的中点D处,折痕为MN(1)求DC的长;(2)求AM的长【考点】翻折变换(折叠问题) 【分析】(1)根据中点的定义可求得DC的长;(2)在RtACB中,由勾股定理求得求得AC的长,设AM的长为xcm,则CM=6x,由翻折的性质可知AM=MD=x,最后利用勾股定理列方程求解即可【解答】解:(1)D是BC的中点,BC=8cm,DC=4cm(2)在ABC中,C=90,AC2+BC2=AB282+AC2=102解得:AC=6设AM的长为xcm,则CM=6x,由翻折的性质可知AM=MD=x在RtMCD中,由勾股定理得:CM2+DC2=DM2,解得:(6x)2+42=x2,解得;x=AM=【点评】本题主要考查的是翻折的性质、勾股定理的应用,利用翻折的性质和勾股定理列出关于x的方程是解题的关键24已知,如图,AC平分BAD,CEAB于E,CDAD于F,且BC=DC(1)BE与DF是否相等?请说明理由;(2)若DF=1,AD=3,求AB的长;(3)若ABC的面积是23,ADC面积是18,直接写出BEC的面积【考点】全等三角形的判定与性质;角平分线的性质 【分析】(1)根据HL证明RtBCE与RtDCF全等,再利用全等三角形的性质解答即可;(2)根据全等三角形的性质解答即可;(3)利用三角形的面积公式解答即可【解答】解:(1)相等,AC平分BAD,CEAB于E,CDAD于F,CE=CF,在RtBCE与RtDCF中,RtBCERtDCF(HL),BE=DF;(2)RtBCERtDCF,DF=EB,CE=CF,CEAB于E,CDAD于F,在RtACE与RtACF中,RtACERtACF(HL),AF=AE,DF=1,AD=3,AB=AF+BE=AD+DF+BE=5;(3)RtBCERtDCF,ABC的面积是23,ADC面积是18,BEC的面积=【点评】本题考查了全等三角形的性质和角平分线定义,注意:全等三角形的对应角相等,对应边相等,直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL25如图1,点P、Q分别是等边ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M(1)求证:ABQCAP;(2)当点P、Q分别在AB、BC边上运动时,QMC变化吗?若变化,请说明理由;若不变,求出它的度数(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则QMC变化吗?若变化,请说明理由;若不变,则求出它的度数【考点】等边三角形的性质;全等三角形的判定与性质 【分析】(1)根据等边三角形的性质,利用SAS证明ABQCAP;(2)由ABQCAP根据全
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 正态分布曲线下面积分布规律王万荣90课件
- 职业康复职业培训山东医学高等专科学校康复医学教研室93课件
- 水电基本知识培训课件
- 二零二五年度房屋租赁押金退还与赔偿协议
- 2025版拆除工程安全监理合同-重点措施与施工安全培训记录
- 二零二五年度网络安全防护与应急响应服务合同
- 2025版绿化工程苗木运输及栽种合同
- 二零二五年度合同管理部门合同管理标准化与规范化合同
- 二零二五年旅游车辆租赁与景区旅游咨询服务合同
- 二零二五年度建筑工程施工安全文明施工合同模板文件
- YY/T 1766.3-2023X射线计算机体层摄影设备图像质量评价方法第3部分:双能量成像与能谱应用性能评价
- 中药饮片采购配送服务投标方案
- 风光电站网络信息系统安全事故应急演练方案
- 五大神电力华煤炭公司劳动定员统一标准
- WB/T 1036-2006菱镁制品用玻璃纤维布
- 【词汇】高中英语新教材词汇总表(共七册)
- 北京市各县区乡镇行政村村庄村名明细
- 笔迹、指纹鉴定申请书
- 长沙市历年中考数学试卷,2014-2021年长沙中考数学近八年真题汇总(含答案解析)
- 【英语】人教版英语八年级英语下册阅读理解专题复习练习(含解析)
- 《植物生理学》课件第四章+植物的呼吸作用
评论
0/150
提交评论