




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.高考数学数列大题训练1. 已知等比数列分别是某等差数列的第5项、第3项、第2项,且()求;()设,求数列2.已知数列满足递推式,其中 ()求; ()求数列的通项公式; ()求数列的前n项和3已知数列的前项和为,且有,(1)求数列的通项公式;(2)若,求数列的前项的和。4.已知数列满足,且()求,;()证明数列是等差数列;()求数列的前项之和5.已知数列满足,.(1)求,;(2)求证:数列是等差数列,并写出的一个通项。6.数列的前项和为,()求数列的通项;()求数列的前项和7. 求证:数列bn+2是公比为2的等比数列; ;.8.已知各项都不相等的等差数列的前六项和为60,且 的等比中项. (1)求数列的通项公式; (2)若数列的前n项和Tn.9.已知是数列的前项和,且,其中. 求证数列是等比数列; 求数列的前项和.10.已知是数列的前n项和,并且=1,对任意正整数n,;设). (I)证明数列是等比数列,并求的通项公式; (II)设的前n项和,求.高考数列大题参考答案1.解析:设该等差数列为,则,即:, , ,的前项和当时, (8分)当时,2.解:(1)由知解得:同理得 (2)由知构成以为首项以2为公比的等比数列;为所求通项公式 (3)3.解:由,又,是以2为首项,为公比的等比数列, (1) (2)(1)(2)得即: ,4解:(), (), 即数列是首项为,公差为的等差数列 ()由()得 5.解: (1)(2)证明:由题设可知 是以为首项,为公差的等差数列 故 6.解:(),又,数列是首项为,公比为的等比数列,当时,(),当时,;当时,得:又也满足上式,7.解: 数列bn+2是首项为4公比为2的等比数列; 由知 上列(n-1)式子累加:.8.解:(1)设等差数列的公差为,则解得. (2)由 9.解:又也满足上式,()数列是公比为2,首项为的等比数列(2)由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 消防设施水压稳定控制方案
- 混凝土养护过程中的水分控制方案
- 四环素抗生素08课件
- 混凝土与钢筋的结合质量控制方案
- 水电站消防安全培训课件
- 2025版快递代理点经营权转让与培训合同范本
- 二零二五年新型木模板施工质量监督合同
- 2025版机器人技术研发保密协议
- 二零二五年度新能源充电桩采购及运营服务合同
- 2025版生态补偿机制分包服务协议
- CBL教学法应用介绍
- 提高肋骨骨折影像学诊断
- 东华临床科研数据管理系统解决方案白皮书
- 辽宁省丹东市《教师基本素养及教育教学综合能力知识》教师教育
- 2023年全国保密知识竞赛全套复习题库及答案(共460道题)
- (推荐下载)家族性结肠息肉病教学课件
- 水生产企业(自来水公司)安全生产责任制(含安全手册)
- 《材料成型装备及自动化》课程大纲
- 临时用电JSA分析表
- 如何提高护士对患者病情掌握的知晓率
- 议论文阅读训练 (针对初一学生)附答案
评论
0/150
提交评论