丰田普拉多全时四驱系统外文文献翻译、中英文翻译_第1页
丰田普拉多全时四驱系统外文文献翻译、中英文翻译_第2页
丰田普拉多全时四驱系统外文文献翻译、中英文翻译_第3页
丰田普拉多全时四驱系统外文文献翻译、中英文翻译_第4页
丰田普拉多全时四驱系统外文文献翻译、中英文翻译_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Toyota Prado four-wheel drive systemToyota Prado (PRADO) Toyota Land Cruiser familys latest SUV. The new development of the next-generation SUV, equipped with Toyotas new 4.0LV6 engine emissions meet Euro standard. Prado (PRADO) advanced engine provides strong power output, together with the sturdy frame and enhanced suspension system so bumpy road to become comfortable and smooth. As a sport utility vehicle, four-wheel drive system can be described as a top priority. This article will introduce you to focus Prado (PRADO) equipped with full-time four-wheel drive systemFor ordinary bevel gear differentials, whether inter-wheel differential or intermediate differential, because the planetary gear speed difference in the absorption due to internal friction generated by the rotation is very small, if not to limit it or lock only, if one side (or a shaft) wheel slip, the other wheels (or axles) is also the driving force is limited to the side of the wheel slip (or axis) of the driving force is equal to the tire can not be fully grip, affect the cars off-road. Prado (PRADO) chassis system uses a full-time drive mode, the layout of the three differentials: front, rear differential bevel gear differentials using ordinary, non-differential limiting and locking device, left and right both sides of the wheel slip through the TRC / VSC braking system to limit; intermediate differential use childcare Sen (TORSEN) T-3-type limited-slip differential. Domestic FAW Toyota Prado (PRADO) using 4BM actuator, can be achieved electronically controlled differential lock.Full-time four-wheel drive system, the basic structureToyota Prado(PRADO)four-wheel drive system consists of the mechanical part of the transmission, actuator (available electronically controlled locking differential), front and rear drive shaft and front and rear differential sand other components.Theel ectronically controlled four-wheel drive in part by the brake control ECU, the engine ECU, inter mediate differential locking button, parking and neutral position switch, 4WD control ECU and splitter electric actuator sand other components .Splitter electric actuator so perate according to the drivers wishes(center differential lock button), brake status, state of the engine operating speed, transmission gear status signal splitter for the differential lock stop control. The purpose of doing so is to facilitate the drivers operation, to ensure the transmission of switching actuator accurately and efficiently, avoid mechanical damage caused by misuse.Splitter electric actuatorsFAW Toyota Prado (PRADO) engine model 1GR-FE, transmission model A750F, its sub-actuators using improved VF4BM. Shown in Figure 2, actuator has two gear L and H, the transmission ratios of 2.566 and 1.000, L, H gear manually by the driver. According to road conditions and the driver to switch the intermediate differential locking button to carry on the differential lock, thus enabling H4F-H4L-L4F-L4L shift mode. H4F and L4F splitter for the corresponding high and low gear differentials F (free) mode, H4L and L4L was L (lock) mode. Other types of sub-actuator shown in Table 1, wherein VF2A splitter 2700 models used in the Prado, TORSENLSD the optional component.Coming from the power transmission through the splitter and a subtransmission L or H gear spread differential gear casing, and then by the differential transmission mechanism within the power to the front, rear axle, 4WD control ECU for the splitter electric actuator control, drive middle differential lock fork shaft to achieve the intermediate differential lock switch.TORSENLSD slip differential structureTORSENLSD structure mainly by the differential housing, the planetary gear carrier, the planetary gear, a sun gear, a ring gear engaging gear, the sun gear wheel engaging the clutch disc, and four other components. The structure has eight planets and the sun gear and the ring gear external teeth meshing with each other, their mutual tooth meshing gears are TORSENT-3 type. When the ring gear and the sun gear of the speed ranges when (a drive shaft with slip tendency), will be forced to produce planetary rotation movement, this movement will lead to rotation with the ring gear or the sun gear relative axial movement. Axial movement of the pressure within the device installed in the clutch pressure plate, resulting in internal friction, thus limiting the relative movement, also limits the movement of the drive shaft to slip, and increase the torque of the drive shaft does not slip; sun wheel engaging with the sun gear wheel pair with each other, so that the sun wheel to the front coming from the PTO shaft. And put the ring gear engaging the ring gear teeth to the rear PTO shaft, thus engaging the teeth actually used for transmission of power transmission gear. As long as the front and rear wheels due to the adhesion surface due to changes in the torque changes, the differential will immediately produce than ordinary differential (non-limiting type) to a much larger internal friction torque. This method is also called differential limit torque-sensitive type.Different driving conditions TORSENLSD torque distributionThe splitter switch to H4F or L4F mode, the differential is in free mode, TORSENLSD have the following four operating states.1 front axle rear axle speed equal to speedWhen the car is driving in a good straight road, the front and rear wheel speed close to equal, that the sun wheel and the ring gear is equal to the angular velocity, the power of the transmission line shown in Figure 6. Shown in Figure 7, the sun wheel and the ring gear speed is equal, the planet gears not rotation movement, the internal friction differential is 0, the radius of the sun wheel and the ring gear ratio of 2:3, the torque of the front axle and the rear axle ratio of 2:3. Normal driving, the rear axle 60% of the torque obtained, to obtain 40% of the torque of the front axle. This torque distribution and quality of the car distribution corresponds to favor the use of the rear axle when the vehicle speed is greater than the front axle load cases, enhance vehicle tire grip to increase stability of the vehicle.2 speed rear axle front axle speed is greater thanWhen the steering wheel or because of slippery roads lead to slip, the vehicle speed is greater than the front axle rear axle appears the situation. Ring sun gear wheel speed is greater than speed, relative movement between the forced rotation of the planetary gears. But because it is the ring gear and the sun gear meshing with each other, meshing with great friction profile angle, and the planetary gear carrier and it will produce friction between, so the rotation of the planetary gear over the friction force by , squeeze the 4th clutch disc. On the other hand, the ring gear is axially leftward movement, squeezing the 1st clutch disc. On the 4th friction clutch plate, limiting the high-speed continues to increase the rotational speed of the sun gear, the No. 1 of the friction clutch plate, put the power differential housing directly transmitted to the ring gear. From the above, the planetary gear and the clutch plate friction autobiography constitutes the friction torque of internal friction, thereby increasing the driving force of the rear axle. Before the rear axle torque distribution ratio can be up to 29:71, thus reducing the front axle torque, putting more driving force distribution to the rear axle attachment good condition. When the vehicle to achieve this torque distribution, the steering axle drive torque reduction, increased lateral adhesion, reduces steering skidding tendency operational stability has been improved, but also improve the car on slippery roads when through sex.3 speed rear axle front axle speed is less thanWhen the ring gear speed is greater than the sun wheel speed, then the planetary gear also produces rotation, rotation time with the ring gear, the sun gear and the tooth will produce friction between the frame; while planetary gear axially to the left, the ring gear and the sun gear respectively, to the left, to the right to make axial movement, still squeezing the 1st ring gear clutch plate, squeeze the 2nd planetary gear clutch disc, sun wheel squeezing the 4th clutch disc, so high-speed rear axle by the 1st and 2, the friction clutch constraints while powered by the planetary gear carrier through the friction clutch plate 4 directly to the sun wheel, increasing the output torque of the front axle. By the internal friction of the differential 1, 2, 4, rotation of the planetary gear friction components, the front, the rear axle reaches the maximum torque distribution ratio 53:47.4 locking center differentialIf a smaller front wheel traction, slip trend emerged, automatically limits its slip differential, front-wheel drive is automatically reduced to 29%. If the wheel continues to decrease adhesion, but this time the front wheel drive force can be further reduced, not the rear axle slip torque is assigned to only 71%, at this time, the driver should locking differential, which kind of situation generally occurs in the morass of extraordinary bad road. If the front wheels off the ground (floating), the driving force of the wheel to 0, then if not locking differential, rear axle can only be assigned to 71% of the maximum driving force, but if locking the differential, rear axle can be assigned to 100% of the drive force.丰田普拉多全时四驱系统丰田普拉多(PRADO)是丰田陆地巡洋舰系列中的最新款SUV。这款全新开发的新一代SUV,配备了丰田全新4.0LV6发动机,排放达到欧标准。普拉多(PRADO)先进的发动机提供强劲的动力输出,配以坚固的车架以及强化的悬架系统,使坎坷的路途变得舒适顺畅。作为一款越野车,四轮驱动系统可谓是重中之重。本文将着重为您介绍普拉多(PRADO)装备的全时四驱系统。对于普通的锥形齿轮式差速器,不论是轮间差速器还是中间差速器,由于行星齿轮在吸收转速差时因自转而产生的内摩擦力很小,假如不对其进行限制或锁止,只要有一侧(或一轴)车轮滑转,则另一车轮(或车轴)的驱动力也会被限制到与滑转一侧车轮(或一轴)的驱动力相等,不能充分发挥轮胎的抓地力,影响汽车的越野性。普拉多(PRADO)的底盘系统采用了全时驱动方式,布置了3个差速器:前、后差速器采用普通锥形齿轮式差速器,无差速限制和锁止装置,左、右两侧车轮的滑转通过TRC/VSC系统以制动方式来限制;中间差速器采用托儿森(TORSEN)T-3型限滑差速器。国产的一汽丰田普拉多(PRADO)采用4BM分动器,可以实现对差速器的电控锁止。全时四驱系统的基本构成丰田普拉多(PRADO)四驱传动系统的机械部分主要由变速器、分动器(可电控锁止差速器)、前后传动轴及前后差速器等组成。四驱的电控部分由制动控制ECU、发动机ECU、中间差速器锁止按钮、驻车及空挡位置开关、4WD控制ECU和分动器电控执行器等组成。分动器电控执行器根据驾驶员的操作意愿(中间差速器锁止按钮)、汽车制动状态、发动机运行转速状态、变速器挡位状态等信号对分动器内的差速器进行锁止控制。这样做的目的是为了便于驾驶员操作,确保分动器内的传动切换准确有效,避免由于误操作而造成的机件损坏。分动器电控执行器一汽丰田普拉多(PRADO)的发动机型号为1GR-FE,变速器型号为A750F,其分动器采用经过改进的VF4BM。如图2所示,分动器有L和H两个挡位,传动比分别为2.566和1.000,L、H挡位由驾驶员手动操作。驾驶员根据路面状况切换“中间差速器锁止按钮”对差速器进行锁止,因而可实现H4F-H4L-L4F-L4L的换挡模式。H4F和L4F为分别对应分动器高、低挡的差速器“F”(自由)模式,H4L和L4L则为“L”(锁止)模式。其他类型的分动器如表1所示,其中VF2A分动器在普拉多2700车型上使用,TORSENLSD为选装部件。由变速器传来的动力经分动器的副变速L或H齿轮传到差速器外壳齿轮,再经差速器内的传动机构把动力传到前、后轴,4WD控制ECU对分动器电控执行器进行控制,驱动“中间差速器锁止拨叉轴”实现中间差速器锁的切换。TORSENLSD防滑差速器结构TORSENLSD的结构,主要由差速器外壳、行星齿轮架、行星齿轮、太阳轮、环形齿轮接合齿、太阳轮接合齿及4个离合器盘等组成。结构中有8个行星齿轮与环齿和太阳轮齿内外相互啮合,它们之间相互啮合齿轮的齿形属于TORSENT-3型。当环齿与太阳轮的转速不等时(某一驱动轴有打滑趋势),行星齿轮会被迫产生自转运动,这个自转运动又会导致与环齿或太阳轮的轴向相对运动。轴向运动的压力对安装在装置内的离合器盘施加压力,产生内摩擦力,因此限制了相对运动,也就限制了打滑的驱动轴的运动,而增加不打滑的驱动轴的扭矩;太阳轮与太阳轮接合齿相互配对,以便把太阳轮传来的动力输出到前驱动轴。而环形齿轮接合齿则把环齿的动力输出到后驱动轴,因此接合齿实际上是用于传递动力的过渡齿轮。只要前、后驱动轮因地面附着力的变化而导致扭矩的变化,差速器

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论