煤矿巷道中的新型电磁环境测试方法外文文献翻译_第1页
煤矿巷道中的新型电磁环境测试方法外文文献翻译_第2页
煤矿巷道中的新型电磁环境测试方法外文文献翻译_第3页
煤矿巷道中的新型电磁环境测试方法外文文献翻译_第4页
煤矿巷道中的新型电磁环境测试方法外文文献翻译_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

英文原文Electromagnetic environments in roadways of underground coal mines and a novel testing methodSUN Jiping1, WANG Fuzeng1,2,*, PAN Tao1, TANG Liang3, WANG Shuai1, MING Yanjie11State Key Laboratory of Coal Resources & Safe Mining, China University of Mining & Technology, Beijing 100083, China2College of Information Science & Technology, Agriculture University of Hebei, Baoding 071000, China3China Software Testing Center, Beijing 100048, ChinaAbstract: The electromagnetic environment of laneways in underground coal mines is an important area for the design of new electronic products, as well as a fundamental space for mine monitoring, surveillance, communications and control systems. An investigation of electromagnetic interference in coal mines is essential for the enhancement of performances of these systems. In this study, a new field method is provided in which radiated emission tests in coal mine laneways have been carried out. We conclude that: 1) the wiring motor vehicles can radiate interference with a bandwidth up to 1 GHz and with an amplitude 10 dBV/m higher than the background noise; 2) the PHS (Personal Handy phone System) mobile communication system can cause interference 40 dBV/m higher than the background noise; 3) an interference 25 dBV/m higher than the background noise can be generated during the communication at a working bandwidth of 48.8 MHz; and 4) power cables, battery vehicles as well as mechanical and electrical dong rooms have little effect on the electromagnetic radiation environment in coal mine tunnels.Keywords: roadway; electromagnetic environment; electromagnetic radiation; electromagnetic interference1 IntroductionThe electromagnetic environment of a laneway in underground coal mines is an important area for electronic designs and layout, as well a fundamental workspace for mine monitoring, surveillance, communications and control systems. So far however, there have been no reports about measurements and analyses in the electromagnetic environment of coal mines. We have carried out and describe some important analyses and reached meaningful conclusions from test results in the electromagnetic environment of two coal mines.2 Test environmentMeasured electromagnetic radiation intensity was measured in the main roadways of the Yi-kuang and Er-kuang collieries of the Pingdingshan Coal Mine Group on Aug. 6th16th and 19th23th, 2008. The production capacity of the Yi-kuang Mine of the Pingdingshan Coal Mine Group is 4500000 tons a year, at three production levels with lengths of 180, 240 and 517 m, a transport belt longer than 40000 m and 26 fixed power substations. The cross-section of the roadway is an arch with a width of about 3.5 m. There are power cables, battery powered electric vehicles, communication systems, as well as a PHS communication system in the roadway. The annual output of the Er-kuang Mine with 7 fixed substations in the roadway is 1100000 tons. There is a 1500 m long horizontal roadway at the 86 m level, 3 m wide, where a number of power cables, a communications leakage cable, monkey cars and wired motor vehicles are located. The sketch map of the cross section of two tunnels is shown in Fig. 1 and the on-site testing environment in Fig. 2.3 Test equipment and methodsThe data were acquired by an R&S spectrum analyzer FSP7, with antenna frequencies ranging from 20 MHz to 7 GHz14-15. The test frequency bandwidths and resolutions were as follows: 1) 20200 MHz, BWF: 10 kHz; 2) 200500 MHz, BWF: 10 kHz; 3) 0.53 GHz, BWF: 30 kHz; 4) 37 GHz, BWF: 30 kHz.The measurement points deployed every 200300 m in the roadways, were near the doors of the electrical and mechanical services chambers or at the branch entrances of the roadways and at the site where the cross-section of the roadways change. A couple of additional measuring points were added. Hence, we were able to acquire and study the effect of the electrical and mechanical dong rooms, as well as the branches of the tunnel turns. Each test point was measured vertically at depths of 0.5, 1.0 and 1.7 m. The distances from the test sites along the wall near the sidewalk were 0.5, 1.0 and 1.7 m in the same horizontal plane.4 Results and discussionThe test results are set out in Figs. 3816.In Fig. 3, data of groups of electromagnetic radiation are shown where there are only power cables in the roadway, with distances between the measuring points and tunnel wall of 0.5, 1.0 and 1.7 m.In Fig. 4 data of groups of electromagnetic radiation spectra are shown, which were obtained near the electrical and mechanical services department cave room with only power cables in the roadway, with distances between the measuring points and tunnel wall of 0.5, 1.0 and 1.7 m.In Fig. 5 electromagnetic interference spectra are shown a battery charged electric locomotive was passing by, t with power cables in the roadway, with distances between t measuring points and locomotive of 0.5, 1.0 and 1.7 m.In Fig. 6, radiation intensity is shown when a wired electric locomotive was passing the tunnel.In Fig. 7a the electromagnetic radiation spectrum is shown when the PHS was operating. In Fig. 7b the spectrum is shown when the leakage communication system was operating. In Fig. 8, a frequency spectrum of electromagnetic radiation measured in a section of an abandoned mine tunnel is shown, where the roadway is without any cables and electrical equipments and far away from the electrical and mechanical dong rooms and a fully mechanized coal mining face.5 Conclusions1) Wired-motor vehicles in a tunnel can lead to a very strong and wide spectrum of electromagnetic interference when passing by, with frequencies up to 1 GHz and with 10 dB v/m above the level of background noise in intensity.2) The PHS mobile communication system in underground mines can cause a strong electromagnetic radiation at the PHS corresponding band (1.92 GHz), with 40 dB v/m above the background noise in intensity.3) The leakage communication system in under groundmines can bring about strong electromagnetic interference in its corresponding working band (48.8 MHz,with 25 dB v/m above the background noise in intensity.4) The power cables of coal mines have little effect on electromagnetic radiation, with less than 3 dB v/m above the background noise at frecuencies of less than 200 MHz.5) Battery charged electric cars in coal mines have little effect on electromagnetic radiation in roadway environments.6) Electrical cave rooms of underground coal mines also have little effect on electromagnetic radiation in roadway environments.6 AcknowledgementsThe present research work was supported by the National Natural Science Foundation of China (No.50674093), the National Scientific and Technological Support Projects (No.2006BAK03B00) and the Pingdingshan Coal Mine Group. The EMI distribution measurements were obtained from several coal mines of the Pingdingshan Group. The authors gratefully acknowledge the support of these institutions.References1 Sun J P, Pan T, Tian Z J. Study on electromagnetic compatibility in coal mine. Journal of China Coal Society, 2006, 31(3): 377-379. (In Chinese)2 Sun J P, Ma F Y, Li C. Improved complex filter applied in enhancing EFT/B immunity at a coal mine monitoring substation. Journal of China University of Mining & Technology, 2008, 18(1): 22-26.3 Sun J P, Ma F Y. Improved shielding and filtering applied to immunity enhancement of underground gas sensors. Journal of China University of Mining & Technology, 2008, 18(2): 220-223.4 CCIR Report 322. World Distribution and Characteristics of Atmospheric Radio Noise. Geneva: ITU, 1964.5 Zhang Q Y. Research about prevention of electromagnetism interference on electronic equipments in coal mine. Journal of Anhui Institute of Architecture & Industry, 2006(5): 79-82. (In Chinese)6 Emslie A, Lagace R, Strong P. Theory of the propagation of UHF radio waves in coal mine tunnels. IEEE Transactions on Antennas and Propagation, 1975(23): 192-205.7 Delogne P. Leaky Feeders and Subsurface Radio Communications. London: Peregrinus, 1982.8 Sun J P, Cheng L F. Analysis of electromagnetic wave propagation modes in rectangular tunnel. Chinese Journal of Radio Science, 2005, 20(4): 522-525. (In Chinese)9 Sun J P, Zhang C L. Effects of cross section dimensions on propagation characteristics in trapezoid tunnel. Journal of Electronics & Information Technology, 2006, 28: 1504-1507. (In Chinese)10 Wang Y H. Characterization of the high frequency electromagnetic interference in coal mine. Telecommunications Science, 2002(3): 63-64. (In Chinese)11 Sun J P, Cheng L F, Zhang C S. Influence of conductivity on radio waves propagation in tunnels. Journal of Liaoning Technical University, 2007, 26(1): 96-98. (In Chinese)12 Wu C X, Du C Y. The analysis of disturbing of explosion protection distribution switch and prevention and cure measures in the pit of mine. Journal of Hebei Energy Institute of Vocation and Technology, 2006(3): 80-88. (In Chinese)13 Cook J C. Radar transparencies of mine and tunnel rocks. Geophysics, 1975, 40(5): 865-885.14 GB/T13926.3-92. Industrial Process Measurement and Control Devices, Electromagnetic Compatibility, Electromagnetic Radiation Requirements. AQSIQ, 1992. (In Chinese)15 GB/T117799.4. EMC, Common Criteria, Emission Standards for Industrial Environment. AQSIQ, 1998. (In Chinese)16 Liu G L, Yin G X. Electronic Measurement. Beijing: Mechanical Industry Press, 2003. (In Chinese)中文译文煤矿巷道中的新型电磁环境测试方法孙继平 王福增 潘涛 唐亮 王帅 明严杰煤炭资源与安全开采国家重点实验室,中国矿业大学,北京100083,中国河北农业大学信息科学与技术学院,保定071000,中国中国软件测试中心,北京100048,中国摘要:煤矿井下巷道中的电磁环境,是新电子产品设计的重要领域,也是煤矿监测,监视,通讯和控制系统的基本空间。对于这些系统的性能提高,煤矿的电磁干扰调查是必不可少的。在这项研究中,一个新的领域中提供的方法即辐射发射测试在煤矿巷道中开始应用。我们的结论是:1)架线电机车辐射干扰的频率和振幅比背景噪声分别高1GHz和10dBV/m;2)PHS(个人手持电话系统)移动通信系统造成的干扰比背景噪声高出40dBV/m。3)干扰高于背景噪声25dBV/m,可在沟通时产生在48.8兆赫工作带宽;4)电力电缆,以蓄电池为动力的机车,以及机械和电气硐室对煤矿隧道中的电磁辐射环境也有一点影响。 关键词:巷道 电磁环境 电磁辐射 电磁干扰1简介煤矿井下巷道中的电磁环境,是电子设计和布局的重要领域,同时也是煤矿监测,监视,通讯和控制系统的基本工作空间。然而到目前为止,还没有出现煤矿电磁环境相关的测量和分析报告。 我们已经进行了描述和一些重要的分析,并得出了部分非常有意义的结论,这主要是由两个煤矿电磁环境的测试结果得出的结论。 2测试环境测量电磁辐射强度测量的测量工作是2008年8月616日和1923日分别在平顶山煤矿集团一号煤矿和二号煤矿的主要巷道中进行的。 平顶山煤矿集团一号煤矿的生产能力为450.00万吨每年3个生产水平的深度分别为180米、240米和517米,拥有一个长度超过4.0万米的皮带运输机和26个固定电源变电站。巷道的交叉部分是一个约3.5米宽的拱形。巷道里有电力电缆,电池供电的电动机车,通信系统,以及PHS(个人手持电话系统)移动通信系统。拥有7个矿井巷道固定电站的平顶山煤矿集团二号煤矿,年产110.0万吨。有1500米长的水平巷道在地下-86米处,宽度3米,有大量的电力电缆,裸露的通信电缆,猴车和架线电机车位于这个水平巷道。两条巷道的横截面示意图如图-1所示,在现场测试环境如图-2所示。 动力电缆电缆照明轨道 水管架线电机车动力电缆电缆照明照明图-1 巷道断面示意图图-2在现场的两个煤矿的测试环境3测试设备和方法这些数据是利用RS的频谱分析仪FSP7在20 MHz到7GHz的频率上收集到的。测试的频率、带宽和结果如下:1)20200MHz,BWF:10KHz; 2)200500MHz,BWF:10KHz; 3)0.53GHz,BWF:30KHz; 4)37GHz,BWF:30KHz。在巷道里每200300米部署一个测量点,在电气和机械硐室或在巷道交叉口附近,以及现场的道路发生变化的部分额外的增加了一些测量点。因此,我们能够获得和研究的电气和机械硐室之间的影响,以及巷道转弯变化的影响。每一个测试点,测量垂直深度在0.5,1.0和1.7m。沿巷道壁附近的行人通道上的测试点在同一水平面上,它们的距离分别为0.5,1.0和1.7m。4结果与讨论测试结果见图3-8。在图-3中,这组电磁辐射数据显示的是在只有电力电缆的巷道里的测量结果,其测量点之间和巷道壁的距离分别为0.5,1.0和1.7米。 (a)距离0.5m时的计算 (b)距离1.0m时的计算 (c)距离1.7m时的计算图-3 地下巷道内电力电缆的电磁辐射光谱在图-4中,这组电磁辐射数据显示的是在靠近只有电力电缆的电气和机械硐室巷道里的测量结果,其测量点之间和巷道壁的距离分别为0.5,1.0和1.7米。 (a)距离0.5m时的计算 (b)距离1.0m时的计算 (c)距离1.7m时的计算图-4 电气和机械硐室附近的电磁辐射光谱在图-5中电磁干扰光谱显示的是电池充电式电动机车驶过来,在电力电缆巷道里的t测点的测试结果,t测点与电机车之间的距离分别为0.5,1.0和1.7m。 (a)距离0.5m时的计算 (b)距离1.0m时的计算 (c)距离1.7m时的计算图-5 电机车开过时候的电磁辐射光谱在图-6显示的是一个有架线电机车通过的巷道的电磁辐射强度。图-6 架线电机车通过巷道时的电磁辐射光谱图-7a显示的是当PHS(个人手持电话系统)移动通信系统在运行时候的电磁辐射情况。图-7b显示的是当裸露的通信系统在工作时候的电磁辐射情况。图-8显示的电磁辐射情况是在一个废弃矿井的一段巷道里测量得到的,那里的巷道没有任何电缆和电气设备,远离电气和机械硐室和综采工作面。图-7 有移动通信信号时的电磁辐射光谱图-8 无背景噪声以及电缆和电气设备时的电磁辐射光谱5结论1) 巷道里有架线电机车通过时可以导致非常强劲且频谱很宽的电磁干扰,强度比背景噪音频率高出1GHz和10以上。2) PHS(个人手持电话系统)移动通信系统在地下矿井中的使用可能会导致在PHS移动通信系统的相应波段(1.92GHz)产生强大的电磁辐射,强度比背景噪音高出40dBV/m以上。 3) 在地下矿井中裸露的通信系统会带来在其相应

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论