转子系统在注塑模具设计中的椭圆截面形状外文文献翻译、中英文翻译_第1页
转子系统在注塑模具设计中的椭圆截面形状外文文献翻译、中英文翻译_第2页
转子系统在注塑模具设计中的椭圆截面形状外文文献翻译、中英文翻译_第3页
转子系统在注塑模具设计中的椭圆截面形状外文文献翻译、中英文翻译_第4页
转子系统在注塑模具设计中的椭圆截面形状外文文献翻译、中英文翻译_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Int J Plast Technol (December 2016) 20(2):249264263DOI 10.1007/s12588-016-9153-4Elliptical cross sectional shape of runner system in injection mold designMehdi Moayyedian1 Kazem Abhary1 Romeo Marian1Received: 3 June 2015 / Accepted: 21 July 2016 / Published online: 27 July 2016 Central Institute of Plastics Engineering & Technology 2016Abstract This paper presents a new cross sectional shape of the runner system in the mold design of the injection molding process. The aim of the new geometry is to reduce scrap, cycle time and ease the ejection of runner system from mold tools. An elliptical cross sectional shape of runner with different ratios was proposed for two circular flat plates with thickness 1 mm. Finite element method (FEM) is employed in SolidWorks Plastic for simulation of the injected part. Short shot defect in the plastic part during the injection molding process is analyzed by SolidWorks Plastic to validate the new proposed geometry. An experimental study of the injection molding process of polypropylene circular flat plates is conducted for the new geometry. The input machine parameters selected are filling time, melt temperature, mold temperature, pressure holding time, and pure cooling time. The research outcomes show no short shot defect associated with the new geometry and also significant 25 and 2.5 % reduction in scrap and cooling time respectively compared to round cross sections. Reduction in contact surface of the runner system with mold walls improved the ease of ejection of runner system out of the cavity as well. The contribution of this study is to design a new geometry of a cold runner system to reduce scrap, cycle time and also provide easy ejection of runner system in the injection molding.Keywords Injection molding process Mold design Runner geometry Short shot defects& Mehdi Moayyedian .au1School of Engineering, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, AustraliaIntroductionThe past century has observed the rapid increase of plastics and their proliferation into all markets. According to world consumption of raw materials by weight, plastic is the highest in comparison with other old materials such as aluminum, steel, rubber, copper, and zinc. It has resulted from specific properties and lower production cost of plastics 1, 2. Injection molding is one of the most significant processes for manufacturing of plastic products and approximately one-third of all plastics are converted into parts via injection molding 3. The application of the injection molding process is increasing significantly in many industries like packaging, aerospace and aviation, building and construction, automotive parts, household articles and so on 1, 3, 4. The quality of the injection moldings depends on material characteristics, mold design and process conditions 47. Three fundamental operations in injection molding are: (1) plastic granules are converted into a melt; (2) molten plastic is injected into the mold cavity or cavities under pressure via sprue, runner and gate systems and (3) mold tools are opened to eject the part out of cavity 1, 8, 9.One of the factors which will determine the final quality of injected part is the runner system which is a connection line between sprue and gates 10. The main purpose of the runner system is to transfer molten plastic from sprue to gates 11, 12. In the cold runner system, the main source of scrap is the scrap from runner and gate system after de-gating. Hence, different rules are evaluated for runner system design to demonstrate the significance of runner systems in injectionroundsemicircularsquarerectangularTrapezoidalModied TrapezoidalPolygonFig. 1 Different runner cross sectional shapesmolding such as (a) smaller runner size to minimize the scrap; (b) easy ejection from mold tools and removal from molded part; (c) filling the cavity quickly with minimum sink mark and weld lines 1316. Three fundamental factors in the runner system design are cross sectional shape, diameter and cavity layout 13. Seven types of cross sectional shapes are available for the runner system for different applications 13, 14, 17 (Fig. 1). Depending on the requirements, different types of runner cross sections are selected 18.The contribution of this paper is to define elliptical or semi-elliptical geometry for runner systems as an effective cross sectional shape aiming at smaller runner size to minimize the scrap, in comparison with round shape, to reduce the total cycle time of injection and to eject the part from mold tools more easily. Furthermore, in this research remarkable phenomena related to process parameters and new geometry of runner systems have been detected that will be presented in another paper.The design criteria of elliptical cross sectional shape for runner systems are introduced herein, and a comparison between round shape and semi-elliptical shape of runner system is considered. To the authors best of knowledge, there are many papers studying process parameters and material characteristics of injection molding a few of which include runner, gate, and sprue but, to the authors best of knowledge, there is no reference analyzing and simulating the elliptical cross sectional shape of runner system.The design of runner and gate systems is conducted herein based on the size and geometry of injected parts. Then, the injected part with runner and gate system is designed via SolidWorks. For accurate result of simulation, finite element method (FEM) in SolidWorks Plastic is employed. Finally, to validate the model, experimental method is conducted for two circular injected platesCross sectional shape of runner systemThe main purpose of a runner system is to transfer the molten plastic from sprue to all cavities via the gate. There are different cross sectional shapes for runner systems and each of them have different applications 11, 17 (Fig. 1). The designer should evaluate different factors for selecting the right geometry of the runner system for a specific product. The most popular shape of runner systems for two-plate mold tools, which is also of the highest efficiency, is round shape. For three-plate mold tools, the trapezoidal and modified trapezoidal are the best options if the runner is to be manufactured only in one half of the mold, but still they are not acceptable be- cause the gate cannot be positioned in line with the central flow stream 14. Ejecting a runner system out of cavity with rectangular, square, and polygon shape is challenging due to sharp corners. If a designer cannot determine the appropriate cross sectional shape of the required runner system and their dimensions, pressure drops and leads to incomplete filling of cavities and high level of heat transfer to mold walls 13, 17, 19. Hence, various cross-sectional area of a runner system can be considered to regulate the flow leading to a better injected part. Finally, the shape and the length of the channel are significant for achieving the optimal flow and consequently the best product with less defects 20.Runner systems with elliptical cross sectional shapeIn injection molding, the most common cross sectional shape for runner system is round shape. In selecting the round shape for specific part design, three main elements are (a) smaller runner size to minimize the scrap; (b) easy ejection from mold tools; (c) filling the cavity quickly with minimum sink mark, weld lines and no short shot 1315. The aim herein is to investigate a runner system of new geometry which can lead to minimal scrap, be positioned in line with the central flow stream of gate, properly fill the cavities, and facilitate the easy eject the part from mold tools. For this purpose elliptical or semi-elliptical cross sectional shape has been taken under investigation and accurately compared with runner systems of round cross sectional shape.To demonstrate the significance of elliptical cross sectional shape of runners, the evaluation of other geometries of runner systems is necessary. The best existing comparison of these two is rectangular and square shape. Rectangle is a kind of square with different width. There are three different ratios in designing the dimension of rectangular runner system in comparison with square ones in terms of width 17 (Fig. 2). According to different applications, rectangular runner system with different ratios of width is chosen. The advantages of rectangular shape over square ones are less scrap of runner system and easier ejection from mold tools. Pressure drop is one of the disadvantages of this geometry which happens by decreasing the width of the square 17.The comparison between circle and ellipse is similar to that of square and rectangle. As shown in Fig. 3, D is the diameter of circle, a is major axis length, and b is minor axis length of ellipse. Major axis length is fixed and the minor axis length is of different rates depending on different industrial applications (Fig. 3). As it leads to further reduction in scrap, easier ejection of part out of cavity, and further reduction in cycle time. For different parts, this factor will be changed. Hence,square shaperectangular shape with width ratio 1/2rectangular shape with width ratio 1/4rectangular shape with width ratio 1/6Fig. 2 Comparison between square and rectangular shape of runner systemcircular shapeelliptical shape with b=0.9aelliptical shape with b=0.8aelliptical shape with b=0.7aFig. 3 Comparison between round and elliptical shape of runner systemproposing different ratio of b depends on many factors of part design such as size and thickness.Advantages of an elliptical runner system over a round one are as follows:1. Reduction in scrap: the size and volume of runner and gate system are the root cause of product scrap. Hence an elliptical runner leads to less scrap compared to the round runner.2. Easier ejection of part from cavity: elliptical runner system, after cooling process compared to round shape has less contact surface with mold walls which leads to easier ejection of the injected part from the cavity.3. Cycle time reduction: the elliptical runner requires less amount of molten plastic; hence the cycle time which includes the injection and cooling phase time will be reduced.4. Central flow stream of gate with runner system. Elliptical runner has central flow stream with most of the gate designs which decrease the turbulences of molten plastic to the cavities.SimulationAfter designing two circular parts as two samples for this application, the next step is to simulate the part via SolidWorks Plastic. For the simulation, defining the injection system is needed. Hence, designing the sprue, runner and gate system with consideration of prior calculations should be considered (Fig. 4). The ratio for designing elliptical cross sectional shape is 0.7b.To make sure that the analysis results are sufficiently accurate, FEM will play a significant role in simulation. According to the geometry of samples, the triangle shape for FEM will be selected (Fig. 5). The selected material for this simulation is polypropylene (PP). Different sizes were evaluated for the surface mesh and from different triangle size of surface mesh, the triangle size of 1 mm is chosen for the injected part. For the injection system which includes sprue, runner and gate, smaller sizes are considered. It has resulted from the sensitivity of the injection system as a critical area of this simulation. Hence, triangle sizes of 0.3 mm for sprue and runner and triangle 0.2 mm for gate are selected for both elliptical and round cross sectional shape of runner. The accuracy of the mesh is determined through a mesh refinement study. The runner and gate length in total is 28 mm for two circular parts with diameter of 100 mm. Also, the sprue has 60 mm length with draft angle 1.5.Fig. 4 Samples of injection with sprue, runner and gate systemFig. 5 FEA for elliptical cross sectional shape of runnerFig. 6 Easy filling of injected part with elliptical crossThe next stage is to set up appropriate process parameters. According to the selected material and injection machine for this simulation, filling time is 0.59 s, melt temperature is 230 C, mold temperature is 50 C, pressure holding time is2.04 s, and pure cooling time is 3.9 s. As mentioned before, the geometry and size of the injection system which includes sprue, runner and gate, have significant effects on operation cycle time, cooling time, and different defects such as sink marks, short shot etc. 25. After running the simulation, the new runner system is checked for acceptability in terms of new geometry and size. The main factors checked are ease of fill, filling time analysis, sink mark analysis; and injection pressure at the end of injection. As shown in Fig. 6, ease of fill for the elliptical cross section is the green area which is in the most acceptable level.One common defect in injection molding is short shot which will happen on thin walls or far from the gate if there are long flow distances 26. According to the simulation results, this part can be successfully filled and even the filling time for an elliptical cross section as shown in Fig. 7a is lower than that of for a round cross sectional shape of runner (Fig. 7b).Fig. 7 a Filling time for elliptical cross section, b Filling time for round cross sectionFig. 8 a Flow front central temperature for elliptical cross section, b Flow front central temperature for round cross sectionAnother factor to prevent short shot for the injected part is to evaluate the flow front central temperature which represents the flow front temperature at every region of the injected part. Based on the simulation results, the flow front central temperature in every region of the injected part is 230.15 C for the elliptical cross sectional shape of runner (Fig. 8a). The simulation result for a round cross sectional shape of runner is the same (Fig. 8b). It means that the possibility of short shot in the cavities for an elliptical cross section shape of runner is low.One of the most significant factors which are necessary to evaluate for the determination of the right size of the runner and gate system is the injection pressure. According to the simulation, this part can be successfully filled with injection pressure42.1 MPa. The injection pressure is less than 66 % of the maximum injection pressure limit which is satisfactory (Fig. 9). The injection pressure for a round cross section is39.6 MPa which is close to an elliptical cross section.Experimental set-upA commercial injection molding granule polypropylene (PP) is employed to produce two circular plates which have 100 mm diameter and 1 mm thickness. The polymer-material parameters of selected material are listed in Table 2. Fig. 9 Injection pressure for both round and elliptical cross section shape of runner systemTable 2 Material properties ofPPMelt temperature230 CMax melt temperature280 CMin melt temperature200 CMod temperature50 CMelt flow rate20 cm3/10 minMax shear stress250,000 pa The machines used to fabricate the mold tools are drilling machine, CNC milling machine and grinding machine. Fully electric horizontal-plastic-injection machinePoolad-Bch seriesis employed for the experimentsMold designThere are different design concepts in fabrication of mold tools. In this study, a two-plate mold which has one parting line with double cavities with a feeding system and without an ejector pin is selected. The mold tools are made of steel CK45with surface hardness 56 HRC. The runner with an elliptical cross section, gate system, and sprue bush are allocated in the cavity plate after grinding (Fig. 10a). Also the cavity plate with guide bars before grinding is demonstrated (Fig. 10b).In designing the mold tools, another element is the cooling system which leads to the solidification of plastic part. Based on the geometry of plastic part, the design for the cooling system is vary. Hence, the circular geometry for the cooling system of cavity plate is selected (Fig. 11).Another factor to consider in fabrication of mold tools is the air vents. Their function is to release the air from the cavity after closing the mold tools; otherwise short shot will happen if air is trapped inside the mold. Both cavities have separate air vents at the left and right side of the cavity plate (Fig. 12).Fig. 10 a Cavity plate with elliptical cross section of runner after grinding, b Cavity plate with elliptical cross section of runner before grindingFig. 11 Cooling system in cavity plate for solidification of injected partFig. 12 Air vents to avoid the air trap in injected partsExperimental resultsAfter setting up the mold tools and injection machine based on different process parameters, the evaluation of the new cross sectional shape of the runner system from different aspects in the manufacturing process is the target of this experiment. To ensure the effectiveness of an elliptical cross section of runner in this study, the test for significance of filling the cavities and injection process based on the different process parameters need to be implemented. The result of short shot analysis (Fig. 13) shows that two cavities with the new cross sectional shape of runner are filled properly.When the injection pressure is higher than the maximum inlet pressure and filling time is higher than the input of the injection machine, short shot will happen. The most significant

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论