2010首届丘成桐大学生数学竞赛个人赛解答_第1页
2010首届丘成桐大学生数学竞赛个人赛解答_第2页
2010首届丘成桐大学生数学竞赛个人赛解答_第3页
2010首届丘成桐大学生数学竞赛个人赛解答_第4页
2010首届丘成桐大学生数学竞赛个人赛解答_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

S.-T. Yau College Student Mathematics Contests 2010 Analysis and Diff erential Equations Individual Solution 1. a) Let xk, k = 1,.,n be real numbers from the interval (0,) and defi ne x = n X i=1 xi n . Show that n Y k=1 sinxk xk ?sinx x n . b) From Z 0 ex 2dx = 2 , calculate the integral R 0 sin(x2)dx. Proof. a) Apply inequality of convex functions to f(x) = log(sin(x)/x). 2. Let f : R R be any function. Prove that the set of points x in R where f is continuous is a countable intersection of open sets. Proof. Use the defi nition of a continuous function. 3. Consider the equation x = x+f(t,x), where |f(t,x)| (t)|x| for all (t,x) RR, R (t)dt 0, i = 1,2,.,r, thus UTAV = diag(1,2,.,p), where p = minm,n and 1 2 . p 0. (b) If k = 0, then kAk2= 1. Let k 0, A Ak= Pr i=k+1iuiv T i , and UT(A Ak)V = D k 0 00 ,Dk= 0 k+1 . r , thus kA Akk2= k+1. Since rank(Ak) = k, we have min rank(B)=kkA Bk2 kA Akk2= k+1. As rank(B) = k, it leads to dim(null(B) = n k, so we have null(B) spanv1,v2,.,vk+1 6= 0. Take x null(B) spanv1,v2,.,vk+1, such that x = k+1 X i=1 liviandkxk2 2 = k+1 X i=1 l2 i = 1, 5 where li R, i = 1,2,.,k + 1. We then have kA Bk2 2 k(A B)xk2 2 = kAxk2 2 = ? ? ? ? ? k+1 X i=1 liAvi ? ? ? ? ? 2 2 = ? ? ? ? ? k+1 X i=1 liiui ? ? ? ? ? 2 2 = k+1 X i=1 l2 i 2 i k+1 X i=1 l2 i 2 k+1 = 2 k+1. Therefore for any positive integer k r, we have min rank(B)=kkA Bk2 = k+1. Solutions to: S.-T. Yau College Student Mathematics Contest 2010 Geometry and Topology Individual 1. Let D= (x,y) R2| 0 x2+ y20 be a fi nite set of positive integers. For each integer n 0, defi ne an to be the number of all fi nite sequences (t1,.,tm) with m n, ti T for all i = 1,.,m and t1+ . + tm= n. Prove that the infi nite series 1 + X n1 anzn Cz is a rational function in z, and fi nd this rational function. Proof. The infi nite series f(z) := 1 + P n=1 anzn is by defi nition f(z) = X mN X tiT i=1,.,m zt1+.+tm= X mN bm(z). The m-th term bm(z) is equal to the evaluation of the polynomial (PtTUt)min the variables UttTat “Ut= ztt T”. So f(z) = X mN X tT zt !m = 1 X tT zt !1 . 6. Describe all the irreducible complex representations of the group S4 (the symmetric group on four letters). Proof. As with any symmetry group, there are two 1-dimensional rep- resentations: the trivial U and the alternating U0. For any g S4, g acting on any v U by g(v) = v, and on any v U0by g(v) = sgn(g)v, where sgn(g) is 1 or 1, depending on whether g is an even or odd per- mutation. Being 1-dimensional, U and U0are certainly irreducible. The standard representation V of S4is the 3-dimensional represen- tation V = z = (z1,.,z4) C4| z1+z2+z3+z4= 0, where the action of g S4on V is given by the standard permutation g(z) = (zg1(1),.,zg1(4). Take v = (1,1,0,0) V . Then g = (13) and g = (14) send v to v0= (0,1,1,0) and v00= (0,1,0,1), respectively. Clearly v,v0,v00 are linearly independent, so V is irreducible. Take the tensor product of V with the 1-dimensional representation U0, we get an irreducible representation of S4: V 0 = U0V . To see that V 0 is not isomorphic to V , let us consider the value of their character at the permutation g = (12): U0(g) = 1, V(g) = 1, so V0(g) = 1 thus V and V 0 cannot be isomorphic. 6 One more irreducible representation of S4is the 2-dimensional rep- resentation W that we will describe as the following.Consider the normal subgroup H S4of order 4: H = 1,(12)(34),(13)(24),(14)(23) It is easy to see that S4/H = S3. Let W be the standard representation of S3, namely, W = z C3| z1+ z2+ z3= 0,g(z) = (zg1(1),zg1(2),zg1(3) for any g S3. As in the case of V , it is easy to see that this 2- dimensional representation is irreducible. Then through the pull back S4 S4/H, W becomes an irreducible representation of S4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论