



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
解析几何三角形面积问题1、已知两定点,满足的动点的轨迹是曲线.() 求曲线的标准方程;()直线与曲线交于两点, 求面积的最大值.2、已知椭圆的离心率为,且椭圆上一点到两个焦点的距离之和为.斜率为的直线过椭圆的上焦点且与椭圆相交于两点,线段的垂直平分线与y轴相交于点.(1)求椭圆的标准方程;(2)求的取值范围.(3)试用表示的面积,并求面积的最大值.3、(2012潍坊期末)如图,椭圆G的中心在坐标原点,其中一个焦点为圆F:的圆心,右顶点是圆F与x轴的一个交点已知椭圆G与直线l:相交于A、B两点(I)求椭圆的方程;()求AOB面积的最大值4、直线与椭圆交于,两点,已知,若且椭圆的离心率,又椭圆经过点,为坐标原点.(1)求椭圆的方程;(2)若直线过椭圆的焦点(为半焦距),求直线的斜率的值;(3)试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.5、已知椭圆的焦点坐标为(-1,0),(1,0),过垂直于长轴的直线交椭圆于P、Q两点,且|PQ|=3,(1) 求椭圆的方程;(2) 过的直线l与椭圆交于不同的两点M、N,则MN的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由.6、椭圆E的中心在坐标原点O,焦点在x轴上,离心率为,点P(1,),A,B在椭圆E上,且+=m (mR)(1) 求椭圆E的方程及直线AB的斜率;求证:当PAB的面积取得最大值时,原点O是PAB的重心7、已知椭圆C:1(ab0)的离心率为,短轴一个端点到右焦点的距离为(1)求椭圆C的方程;(2)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求AOB面积的最大值8、已知A(,0),B(,0)为平面内两定点,动点P满足|PA|+|PB|=2(I)求动点P的轨迹方程;(II)设直线与(I)中点P的轨迹交于M、N两点求BMN的最大面积及此时直线l的方程.9、平面直角坐标系内已知两点A(-1,0)、B(1,0),若将动点P(x,y)的横坐标保持不变,纵坐标扩大到原来的倍后得到点Q(x,y),且满足=1.()求动点P所在曲线C的方程;()过点B作斜率为-的直线l交曲线C于M、N两点,且+=,试求MNH的面积.10、在平面直角坐标系内已知两点、,若将动点的横坐标保持不变,纵坐标扩大到原来的倍后得到点,且满足.()求动点所在曲线的方程;()过点作斜率为的直线交曲线于、两点,且,又点关于原点的对称点为点,试问、四点是否共圆?若共圆,求出圆心坐标和半径;若不共圆,请说明理由.11、2011湖南卷 如图,椭圆:的离心率为,轴被曲线: 截得的线段长等于的长半轴长()求、的方程;()设与轴的交点为,过坐标原点的直线与相交于点、,直线分别与相交与.(i)证明:;(ii)记的面积分别是.问:是否存在直线,使得?请说明理由xyOPQAMF1BF2N12、设椭圆C1:的左.右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图,若抛物线C2:与轴的交点为B,且经过F1,F2点。(1)求椭圆C1的方程;(2)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P.Q两点,求面积的最大值。13、如图,已知直线l与抛物线相切于点P(2,1),且与x轴交于点A,O为坐标原点,定点B的坐标为(2,0). (I) 若动点M满足,求点M的轨迹C;(II)若过点B的直线l(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求OBE与OBF面积之比的取值范围.14、已知椭圆:的左、右焦点分别为离心率,点在且椭圆 ()求椭圆的方程; ()设过点且不与坐标轴垂直的直线交椭圆于两点,线段的垂直平分线与轴交于点,求点横坐标的取值范围.()试用表示的面积,并求面积的最大值15(潍坊仿真三)设椭圆(ab0)的焦点分别为、,直线交轴于点A,且(I)试求椭圆的方程:(II)过F1、F2分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),试求四边形DMEN面积的最大值和最小值.16(潍坊仿真一)已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线x2=8的焦点。(I)求椭圆C的方程;(II)点P(2,3),Q(2,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑投影硬件配置方案设计
- 工厂改造景观建筑方案设计
- 观光小火车路基施工方案
- 屋面垂直爬梯施工方案
- 出入境辅警考试题及答案
- 职务代理制度管理办法
- 教师思想汇报范文大全
- 美术丝巾拓印活动方案策划
- 企业并购章程及程序
- 信息技术外包行业市场分析
- 跨境电商第三方物流合作中的三方保密协议及责任划分
- 网信专员考试题及答案
- 2019ESCEAS血脂异常管理指南2025重点更新解读
- 《现代传感与检测技术》教学大纲
- 挖煤专业毕业论文
- 山路车辆行车安全培训课件
- 2025北京京剧院招聘工作人员10人笔试备考题库及答案解析
- 转基因玉米培训课件
- 建筑设计公司结构设计师工作手册
- 2025年青海省事业单位招聘考试卫生类护理学专业知识试题
- 宝宝呛奶科普课件
评论
0/150
提交评论