《鸡兔同笼》教学反思_第1页
《鸡兔同笼》教学反思_第2页
《鸡兔同笼》教学反思_第3页
《鸡兔同笼》教学反思_第4页
《鸡兔同笼》教学反思_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

鸡兔同笼教学反思 鸡兔同笼教学反思 “鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在孙子算经中。本节课主要是借助这个题材,培养学生从多角度思考,运用多种方法解决问题的能力;重在研究解决问题的方法和策略上,并在合作交流过程中,积累解决问题的经验,掌握方法,并灵活运用这些知识解决生活中类似“鸡兔同笼”的问题。所以在设计教学过程时我力求渗透以下几点: 一、在放手探究中体会解题策略 学生刚刚接触“鸡兔同笼”问题时,要列式计算往往感到困难,所以我设计了几种由浅入深的方案,先通过儿歌引入算出一只兔和一只鸡的头数和脚数,再逐步增加鸡和兔的只数,学生用自己的生活经验可以口算出总头数和总脚数;然后出示已知头数和脚数求鸡和兔的只数。在放手探究时提供画图、列表、倒推、解方程等等方法,数形结合使学生理解并运用这些方法解决问题。这样不仅关注解决问题的结果,更关注知识的生成;不仅关注优秀学生,更关注全体学生的全面发展。从学习效果来看,确实让全体学生在数学上得到了不同的发展:因为层次不同的孩子选择了适合自己的不同方法,都得到了正确答案。 二、在策略多样化中体验最优方法 学生尝试应用画图法、列表法、假设法和代数法等来解决问题,他们在探究的过程中,根据自己的经验,尝试不同的方法,找到了解决问题的策略。但是让学生认识、理解、运用假设法是这节课的教学重点,也是教学难点。特别是假设全是鸡为什么求出来会是兔,学生很难弄懂。为此,在新课前我用兔子起立学鸡的故事进行铺垫,让学生明确,把一只兔当成了鸡就会少2只脚,用总共少的只数除以每只少的只数就是兔子的只数。尽管假设法的思路学生刚开始不太接受,但是孩子们体验到当数量很多的时候,画图和列表的方法就行不通了,所以假设法就更具有普遍性,这样就为以后的数学学习提供了一种非常重要的数学思想。所以尽管方法很多,假设法和列方程相对更优。 三、在古题新解中建立数学模式 其实在生活中,鸡兔同笼的现象是及其少见的,我们也没有必要数出它们的头和脚,算出只数。那么这类题型在现实生活中有哪些应用,它的解题方法给我们哪些启示呢?这些才是这节课要渗透的思想。为此我摘录了古今中外很多类 似鸡兔同笼的问题,让学生一一分析。找到这类题目的共同特征,得出共性,总结方法。因此鸡兔同笼不仅仅代表鸡兔同笼,它反映了一种数学模式的建立和数学思想的渗透。学习数学只有在个案的探索中找到了规律性的结论和方法,才能学到有价值的数学。 不过由于一节课时间有限,不可能灵活掌握所有类型,所以有的学生还是有模仿做题的倾向,遇到变式练习时不能正确解决。 鸡兔同笼教学反思(朱燕芳) 数学不仅仅要让学生学会计算、解决实际问题等,还要通过这些知识的学习让学生的思维得到锻炼。鸡兔同笼问题 _一种问题,在生活中,鸡兔同笼的现象是很少碰到,没见过有人把鸡和兔放在一个笼子里,即使放在一个笼子里又有谁会去数他们的脚呢?直接数头不就行了?那么是不是说“鸡兔同笼”是一个完全没有价值的数学问题呢?显然不是,鸡兔同笼问题,是让我们通过鸡兔腿数的变化,在这种变化中寻找不变的规律,并采用有效的手段来理解数学问题的过程。以下是我上完课的几点体会: 一、大敢转换情境,提高情境“知名度”。 生动有趣的数学问题情境,能让学生愉快的探索数学,享受数学带来的乐趣。课堂教学中教师要创设学生喜闻乐见的教学情境,使学生始终处于一种良好的愉悦的氛围中,从而调动学生学习数学的兴趣,发展学生的思维能力。还要注重对学生进行引导,让学生通过观察、操作、讨论、思考发现并掌握知识,时刻把学生推到学习的主体地位,在一个恰当的主题中学习数学,发展能力。基于这一点,本节课的内容安排在“数学与生活” 当中,用在生活中经常遇到的一些问题,来引入(幻灯出示:) 1、小明的储蓄罐里有1角和5角的硬币共27枚,价值5.1元,1角和5角的硬币各有多少枚? 2、12张乒乓球台上同时有34人正进行乒乓球比赛,正在进行单打和双打比赛的球台各有几张? 类似于这样的问题,我们的祖先早在1500多年前就已经开始研究了,再出示孙子算经及鸡兔同笼问题,但同时又聪明地把数改小了:今有鸡兔同笼,上有八头,下有二十二足,问鸡兔各几何?一石激起千层浪,鸡兔怎能同笼?学生的探究欲望马上调动起来,这时,又让学生了解“经典”,感受 “经典”。 二、鼓励参与,在合作中提高学习效率。 根据新课程标准在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。本节课中,我主要通过创设现实情境,让学生投入到解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。学生能够积极地思考,积极地合作,积极地探讨,充分地发挥了小组的作用,兵教兵,通过学习使学生认识到数形结合的重要性,提高学生分析问题和解决问题的能力。大部分学生学会了,这是很让我感到激动的,因为毕竟鸡兔同笼问题比较难。 三、关注每一个学生的发展,提高课堂教学的生成性。 由于学生原有认知背景的不同,他们对解答本课时的题目存在较大的差异,所以,在同一问题中,学生的认知水平也有不同。在教学的过程中,不能提出统一的要求,要允许不同的学生采用不同的解题方法。本节课,师生共同经历了六种不同的方法:逐一列表法、取中列表法、假设法、列方程、画图法及古人的砍足法,最后比较哪种算法比较好。这样教学既培养了学生探究能力和小组合作能力,又体现 了算法多样化与优化,也让不同的学生在同一节课中都有不同程度地提高。 总的来说,本节课从学的角度呈现学习内容,合理安排教学过程,提供操作材料,拨动学生心弦,把学习的主动权交给学生,让学生在合作学习的活动中主动完成知识的建构过程。因此,在整堂课中,学生学得兴趣盎然,在问题得到解决的同时体验到了成功的喜悦,感受到数学知识的价值和数学学习的乐趣。但在教学时间的控制上还略显紧张,一些环节的处理还应该在从主次的角度更好地进行。 但教学中也存在着很多问题,反思如下: 1、小组合作学习中教师如何调控才能进一步提高合作学习的效率,如时间的把握、学生合作过程的控制、合作学习的效果等; 2、学生汇报时,要多培养学生质疑能力,听不明白的及时向小老师提问,及时解决不懂的问题。 3、要注重培优辅困,特别是学困生的辅导如何在课堂教学中落实,使他们通过教师的引导取得明显的学习效果,真正落实新课标提出的“不同的人在数学上得到不同的发展”目标。 “鸡兔同笼”教学设计与反思 永泰县城南小学卢鸿祯 设计理念: “鸡兔同笼”作为一种经典名题,在国标新教材中,不少版本都有编排。比如,北师大版五年级上册“尝试与猜测”中用它来让学生学会表格列举;苏教版六年级上册将之作为一道练习题来巩固“假设和替换”的策略;而人教版更是浓墨重彩,在六年级上册“数学广角”中用6个页码详细介绍了“鸡兔同笼”问题的出处、多种解法及实际应用。除此之外,还有很多名师在不同年级用不同的方法来生动地演绎它。但我想尽管“鸡兔同笼”各年级都可以作为教学内容,且有着不同的目标指向,但对于六年级而言,是否可以用来让学生“从已有的经验出发,经历将实际问题抽象成数学模型并进行解释和应用的过程”,从而更好地认识数学?让学生在学习过程中培养“模型”意识和举一反三的能力。感受到一些数学问题所具有的“模型”的力量呢?带着这样的思考,我对这节“鸡兔同笼”数学活动课作了如下尝试: 教学内容:人教版义务课程标准实验教科书数学六年级上册第112117页。教学目标: 1了解“鸡兔同笼”问题,感受古代数学问题的趣味性。 2尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和代数方法的一般性。 3在解决问题的过程中,培养学生的逻辑思维能力,并向学生渗透转化、函数等数学思想和方法。 教学重点:用假设法和方程解决“鸡兔同笼”问题。 教学难点:用假设法程解决“鸡兔同笼”问题。 教学具准备: 1、设计导学提纲: 自学课本第112115页并思考解决以下几个问题: (1)、尝试用不同的方法解决例1的“鸡兔同笼”问题。 (2)、生活中有类似“鸡兔同笼”的问题吗?请举例说明。 (3)、试着完成课本第115页“做一做”第1题。 (4)、你还有什么疑问吗? 2、课件制作。 教学流程: 一、课前谈话。(课前板书:鸡兔同笼) 师:同学们,你们知道我国古典文学的四大名著是什么吗? 生:幻灯片:西游记、红楼梦、三国演义、水浒传。 师:这些名著你们读过吗? 师:四大名著是中国乃至全人类共同拥有的宝贵文化遗产,在整个华人世界中有着深远的影响。我建议大家去读一读。 师:这是我们的古人在文学方面的伟大成就,其实我们的古人在数学方面也有很多了不起的成就,为我们留下许多有名的著作。你知道吗?让我们一起来看一看吧。 展示:(幻灯片)周髀算经九章算术海岛算经王曹算经孙子算经缉古算经等。 师:你们见过这些书吗?在哪里见过? 生:我在数学书上见过。 生:我在网络上见到过。 师:昨天要求同学们自学的“鸡兔同笼”就在这其中的一部书里,大家一起说是哪部? 生:孙子算经。 师:对了,这是一部成书于1500多年前的数学著作,书中记载着很多有趣的数学名题。“鸡兔同笼”就是其中的一道。 师:通过昨天的自学,你们知道鸡兔同笼是什么意思吗? 生:鸡兔同笼就是鸡兔在一个笼子里。 生:鸡兔同笼就是把鸡和兔关在一个笼子里,告诉我们鸡兔的总头数和总脚数,求出鸡兔各几只。 师:是的,鸡兔同笼不仅仅是鸡和兔关在一个笼子里,而是一种数学问题。(板书:问题) 二、借助导学提纲,交流自学情况。 全班汇报、展示。 1、不同方法解决“鸡兔同笼”的问题。 师:通过自学,你们也一定找到不少“鸡兔同笼”的解决办法吧!谁先来汇报? 生汇报: 第一种:列表法。 生:我采用列表法得出的。先假设有1只鸡,7只兔子,脚就有30条。脚太多,然后又假设有2只鸡,6只兔子,脚还是太多了。这样试下去就得到了有3只鸡,5只兔子。 生:我也是列表法。我们是先假设鸡有4只,兔子也有4只。这样比较简便。 师:你们认为这种方法有什么优势? 生:这种方法比较简单,容易理解。 师:除了列表法,你们还有什么方法? 第二种:假设法。 生1:我先用2682=10(只),我是想假设全部是鸡的话,8只鸡就有16只脚,而26减去16还多出10只。也就是有些兔也当成鸡了,一只兔当成一只鸡就会少算2只脚,再用102=3,就是兔有5只,鸡有85=3只。(配合幻灯或画图演示) 师:刚才这位同学把笼子里的动物全假设成鸡了,还有不同的假设法吗? 生2:我是全部假设成兔,总共有8426=6(只)脚,一只鸡当成一只兔就会多算2只脚,再用62=3(只),就是鸡有3只,兔有83=5只。(配合幻灯或画图演示) 师:这两位同学的方法有什么相同之处吗? 生:都是用的假设法。(板书:假设) 师:还有和他们的解法不一样的吗? 第三种:列方程。(配合幻灯演示) 生:设有x只兔,鸡就有(8x)只。列出方程4x2(8x)=26,解是x=5,即有5只兔,83=5只鸡。 师:老师想问你,这里的 4x和2(8x)分别表示是什么? 生:4x是兔脚的总数,2(8x)是鸡脚的总数。 师:方程解完了也要注意检验,列方程的解法还有个名字也就叫代数法。(板书:方程) 第四种:古人的解法。(配合幻灯演示:) 生:用2628=5,这是兔子的只数,再用85=3,这就是鸡的只数。 (屏幕显示:脚数2头数=兔数 头数兔数=鸡数) 师:看起来很复杂的“鸡兔同笼”问题,古人解起来就这么简单啊。 师:老祖宗的方法真是太简单了,其中的道理你们都听明白了吗? 师:这个方法看起来很简单,要理解它还真不容易呢。其实对这个问题,不但咱们中国人有研究,外国人对它也有关注,美国教授波利亚,他讲了一个很有趣的故事解释了这种解法的道理。 (课件演示,教师相机解释):草地上有一群鸡兔在玩耍,突然,鸡对兔说:“我们的本领可大了,可以做金鸡独立”。说着每只鸡就抬起一只脚,只用一只脚站着。兔子们见了,也不甘示弱:“这有什么了不起,看看我们兔子作揖。”说完,每只兔就把两只前脚提起来,只留下两只后脚站着。哈哈,这下有趣了,原来的双脚鸡都变成了“独脚鸡”,原来的四脚兔都变成了“双脚兔”。看着图示,你发现什么了? 生1:现在草地上鸡和兔的头数没变,站立的脚数只剩下原来的一半,也就是“脚数2”。 生2:现在草地的脚数再和头数比,只有一只兔子多出1只脚,所以,脚数2头数=兔的只数。 师:都看明白了吗?你们觉得我们老祖宗的方法怎么样? 生3:方法很简单,蕴含的道理很深刻! 师:不过,大家也要小心哦,这种看起来很简单的方法也是有局限的。 2、方法优化。 师:这么多不同的解决方法,你们最喜欢哪种方法呢? 生1:我喜欢方程解法,因为方程顺着题目的意思想起来比较方便。 生2:我觉得要看题目来决定,先弄清题目意思,再来选择合适的方法。 师:这些解法各有各的特点,它们既有联系又有区别,既有优长也有缺陷。希望大家能根据题目的特点灵活运用。 3、体验感受,建立模型。 师:通过刚才的汇报说明大家对“鸡兔同笼”的解决办法掌握的不错,只是老师现在有一个疑问,在生活中我们很少看到有人把鸡和兔放在一个笼子里养吧,就是放在一起养,也没谁去数头数脚做这种无聊的事。我们的老祖宗干嘛煞费苦心地研究来研究去的,一千多年过去了,还作为宝物似的流传到今?“鸡兔同笼”有什么独特的魅力吗?”(显示:“鸡兔同笼”有什么独特的魅力?)日常生活中有类似鸡兔同笼的问题吗? 师:据资料显示,日本人也研究鸡兔同笼问题,只是他们不叫“鸡兔同笼”,而叫“龟鹤同游”。 (幻灯:龟鹤同游,共有40个头,112只脚,求龟、鹤各有多少只?) 师:日本人说的“龟、鹤”和我们说的“鸡、兔”有联系吗? 生:龟和兔一样的,有四只脚。鹤和鸡一样的,都是两只脚。 幻灯:龟-兔 鹤-鸡 师:老师昨天晚上还看到这样一首儿歌。 (幻灯:一队猎人一队狗,两列并成一队走。数头一共五十五,数脚共有一百九。) 师:我们研究了鸡兔同笼、龟鹤同游,也来给这首儿歌取个名字? 生:人狗同行。 师:这“人狗同行”和“鸡兔同笼”有联系吗? 生:我觉得它和鸡兔同笼的问题仍然是一样的。猎人相当于鸡,狗相当于兔。 师:他的这个理解可以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论