




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
抽屉原理课件范文 数学广角抽屉原理 实验小学 潘 聪 聪 数学广角抽屉原理 【教学内容】: 我说讲课的内容是人教版六年级数学下册数学广角抽屉原理第一课时,也就是教材70-71页的例1和例2。 【教学目标】: 知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。 过程与方法:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。 情感与态度:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。 【教学重点】: 1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。 2、“总有”“至少”具体含义,以及为什么商+1而不是加余数。 【教学难点】: 理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 【教法和学法】: 以学生为课堂的主体,采用创设情境,提出问题,让学生动手操作、自主探究、合作交流。 【教学准备】:一定数量的笔、铅笔盒、。 【教学过程】: 一、游戏激趣,初步体验 师:同学们喜欢做游戏吗?学习新课之前,我们先做个游戏,老师这里准备了2张凳子,请3个同学上来,(找生)听清要求,老师说“请坐”时,每个同学必须都坐下,谁没坐下谁犯规,(师背对)听明白了吗?好“请坐!”告诉老师他们都坐下了吗?老师不用看,就知道一定有一张凳 子上至少坐了两名同学,对吗?假如请这3位同学再反复坐几次,老师还敢肯定地说:“不管怎么坐,总有一张凳子上至少坐2名同学,你们相信吗?其实这个游戏里面蕴藏着一个非常有趣的数学原理,想不想通过自己动手实践来发现它? 【意图:在课前进行的游戏激趣,一是激发学生的兴趣,引起探究的愿望;二为今天的探究埋下伏笔。】 二、操作探究,发现规律 1、小组合作,初步感知。 师:下面我们先从简单的情况入手,请看大屏幕(出示例1:4只铅笔放入3个盒子中),有几种不同的放法?你能得到什么结论?下面我们小组合作(出示合作要求,请生读要求),看哪组动作最快? (1)、学生动手操作,讨论交流,老师巡视,指导; (2)、全班交流。 师:哪个小组愿意汇报一下你们的研究成果?(找生展示,师板书:(3,1,0)(2,2,0)(4,0,0)(1,1,2)。 师:老师也是这样摆的,我们一起看一下(课件演示)观察这几种放法,你能得到什么结论?(课件出示:不管怎么放,总有一个文具盒中至少有2枝铅笔)。 师:刚才我们把所有情况都一一列举出来,想一想不用一一列举,我们能不能只要一种情况,也能得到这个结论?(生答 “平均分”的方法时,课件演示)每个盒子先放1枝,还剩几枝?(1枝)这1枝怎么摆?(放哪个里面都行)你有什么发现?(无论怎么放,总有1个盒子至少放2枝铅笔)。师:既然是平均分,能用算式表示吗?(生答,师板书:43=1?1) 师:这里的4指的是什么?3呢?商1呢?余数1呢? 师:看来解决这个问题时,用平均分的方法比较简便。 【设计意图:通过让学生自己动手操作,用列举法找出四枝铅笔放入三个盒子的所有方法,观察总结概括出四种方法的共同点,即总有一个盒子里至少有2枝铅笔,让学生充分理解“总有”、“至少”的含义。】 2、逐步深入,建立模型 (1)初建模型 如果把5枝铅笔放入4个盒子(出示),会是什么结果呢?(生答),你怎么想的?(生说)能用算式表示吗?(生答,师板书:54=1?1) 增加难度:把100支铅笔放进99个盒子呢? m+ 1铅笔放进m个盒子呢? 师:你有什么发现?(铅笔数比盒子数多1时,无论怎么放,总有一个盒子至少放2枝铅笔)。你的发现和他一样吗?你们太了不起了,同桌互说1遍(出示,齐读)。 【设计意图:此环节让学生充分体会用平均分的好处,用除法算式表示出来,形象直观,便于学生理解,帮助学生初步建立模型。】 (2)完善模型 师:我们研究了铅笔数比杯子数多1的,那铅笔数比杯子数多2,多3,多4呢?会有什么情况出现呢?我们再来研究研究。(出示例2:5本书放进2个抽屉里,不管怎么放,总有一个抽屉至少放几本书?为什么?)可以和小组的同学交流一下(小组交流)。 汇报: 生:把5本书放2个抽屉,先平均分,每个抽屉放2本,剩1本,无论怎么放,总有1个抽屉至少放3本书。(课件演示)谁能用算式表示出来?(板书:52=2?1) 师:用同样的方法推想:如果把7本书放2个抽屉里,不管怎么放,总有一个抽屉至少放几本书? 生:把7本书平均分,每个抽屉放3本,剩1本,无论怎么放,总有1个抽屉至少放4本(课件演示)。可以用算式记录下来吗?(板书:7 2=3?1) 如果把9本书放进2个抽屉呢? 生:先把9本书平均分,每个放4本,余1本,不管怎么放,总有1个抽屉至少放5本(课件演示)。 用算式怎么表示?(板书:92=4?1) 【设计意图:让学生在这个过程中发展了学生的类推能力,形成比较抽象的数学思维,逐步建立模型】 3、观察:你又有什么发现?(生:余数都是1,至少数=商+余数,至少数=商+1) 4、师:大家有没有发现这里的余数都是1,余数有没有是2、3、4的情况呢? 如果余数不是1,那会有什么结论呢?想不想知道?(出示:7只鸽子飞进5个鸽舍里,至少有2只鸽子要飞进同一个鸽舍里,这是为什么?) 师:这里的笼子就是刚才的抽屉 小组讨论。 汇报交流。 先把7只鸽子平均分,每个鸽舍飞1只,还剩2只,把这2只再平均分,飞入不同的鸽舍里,所以无论怎么飞,总有1个笼子至少2只鸽子。 师总结:看来,余数不是1时,要把余数再平均分,才能保证至少。 怎么列式?(板书:75=1?2) 【设计意图:从余数1到余数2,让学生再次体会要保证“至少”必须尽量平均分,余下的数也要进行二次平均分。】 5、修改结论,得出规律:大家现在认为至少数应该与什么有关?(板书:至少数=商+1) 6、引出课题:同学们真了不起!不知不觉中你们已经发现了一个很伟大的数学原理,也就是我们今天研究的抽屉原理(板书课题)一起来看大屏幕,(出示抽屉原理资料介绍)找生读。 下册抽屉原理(二)教案 一、教学目标: 1.通过操作、观察、比较、推理等活动,初步了解抽屉原理,运用抽屉原理的知识解决简单的实际问题。 2.在抽屉原理的探究过程中,使学生逐步理解和掌握“抽屉原理”,使学生经历将具体问题“数学化”的过程,培养学生的“模型”思想。 3.通过对“抽屉原理”的灵活应用,感受数学的魅力,体会数学的价值,提高学生解决问题的能力和兴趣。 二、教学重、难点 教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。 教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 三、教具学具:课件、扑克牌、每组都有相应数量的铅笔、杯子。 四、教学过程: 一、创设情景 导入新课 师:同学们玩过扑克牌吗?扑克牌有几种花色?取出两张王牌,在剩下的52张扑克牌中任意取出5张,聪明的你们会发现什么?(师生演示) 学生汇报:这5张牌中至少有两张是同花色。 师追问:为什么? 生:因为去掉2张王牌,剩下还有4种花色,把4种花色当作4个 抽屉,把5张扑克牌放进4个抽屉,必须有一个抽屉至少有2张扑克牌,所以至少有2张是同花色的。 师:这就是有趣的数学原理抽屉原理。(板书课题) 师:这节课我们就一起来探究抽屉原理中的第二个问题。 (设计意图:把抽象的数学知识与生活中的游戏有机结合起来,使教学从学生熟悉和喜爱的游戏引入,让学生在已有生活经验的基础上初步感知抽象的“抽屉原理”,提高学生的学习兴趣。) 二、提供平台,开放探究 (一)小组交流 现在和组内的伙伴交流预习的收获,并尝试解决不懂的问题,解决不了的记录下来,一会儿全班解决。 (学生组内交流) (二)归纳提练 1.出示例2:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书? (学情预设:学生可能出现两种情况,第一种用实物操作,把书放入纸盒中探究;第二种用假设法思考。) 2、全班展示:(以小组为单位) 学生汇报时,请小组代表汇报自己小组探究的过程和结果,其他小组要认真倾听,有不同想法的再进行汇报,汇报时可以借助演示实验来帮助说明。 (学情预设:第一种通过操作后用枚举的方法出示(5,0),(4, 1),(3,2)三种情况,可知在任何一种结果中,总有一个数不小于3,故总有一个抽屉里至少有3本书; 第二种用假设法:先把每个抽屉各放1本,还剩下3本,再把每个抽屉各放1本,还剩1本,这样不管怎么放,总有一个抽屉至少放进3本书;也可能有学生说把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。) 生1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。 课件:52=2本?1本(商加1) 课件:如果是7本书呢?9本呢? 指名说,课件:72=3本?1本(商加1) 92=4本?1本(商加1) 师:观察板书你能发现什么? 生:“总有一个抽屉里的至少有2本”只要用“商+ 1”就可以得到。 师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书? 学生思考后交流。 生:“商+1”、“商+ 2” 师:是“商+1”还是“商+余数”呢? 请同学们在小组内讨论或操作验证,再全班交流。 (设计意图:研究了“把5本书放进2个抽屉”的问题后,变式提出“把7本书放进2个抽屉”和“把9本书放进2个抽屉”的问题,让学生利用前面的方法进行类推,培养学生分析推理等能力及灵活运用知识解决解决问题的能力。) (学情预设:学生可能会说出以下三种理由: 第一种:用实物实际分后发现结论是总有一个抽屉里至少有2本书,不是3本书。 第二种:把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。 第三种:把5本书平均分放到3个抽屉里,“总有一个抽屉里至少有2本书”用“商+1”就可以了,不是“商+余数”。) 交流、说理活动: 生1:我们组通过讨论并且实际分了分,结论是总有一个抽屉里至少有2本书,不是3本书。 生2:把5本书平均分放到3个抽屉里,每个抽屉里先放1本,余下的2本可以在2个抽屉里再各放1本,结论是“总有一个抽屉里至少有2本书”。 生3我们组的结论是5本书平均分放到3个抽屉里,“总有一个抽屉里至少有2本书”用“商加1”就可以了,不是“商加2”。 师:现在大家都明白了吧?那么 _够确定总有一个抽屉里至少有几个物体呢? 生4:如果书的本数是奇数,用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。 师再顺势引导学生归纳出“如果物体的个数是奇数,用物体的个数除以抽屉数,再用所得的商加1,就会确定总有一个抽屉里至少可以放几个物体了。” (设计意图:学生通过自己动手操作,在实验中、合作中、讨论中发现规律,分析问题的形成, 把动脑思考与动手操作相结合,独立思考与小组合作相结合。让同学之间互相帮助,相互提高,让问题在学生的探究中得到解决。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电站二次监控课件
- 高考化学重庆题讲解课件
- 高级摄影基础知识培训班课件
- 1.4用一元二次方程解决问题 分层练习(含答案)数学苏科版九年级上册
- 音乐三年级下册 卖报歌 课件(内嵌音频)
- GLP-1R-agonist-32-生命科学试剂-MCE
- 5-Azacytosine-15N4-生命科学试剂-MCE
- 初级社工考试题及答案
- 英美拼写考试题及答案
- 电源电路基础知识培训课件
- 广东省东莞市2024-2025学年八年级下学期7月期末考试英语试卷(含答案)
- 医院设备采购培训课件
- 2025年电力工程行业研究报告及未来发展趋势预测
- 保护患者合法权益培训课件
- 2025年湖南省中考语文试卷
- 2025年汽车修理工(高级)实操考试题带答案
- 气道支架植入术后护理查房
- 2025年时事政治题附完整答案详解【各地真题】
- 乡村文化振兴培训课件
- 子痫前期预测与预防指南(2025)解读
- 2025年卫生院信息化建设年初工作计划
评论
0/150
提交评论