三角形全等之倍长中线(习题及答案)_第1页
三角形全等之倍长中线(习题及答案)_第2页
三角形全等之倍长中线(习题及答案)_第3页
三角形全等之倍长中线(习题及答案)_第4页
三角形全等之倍长中线(习题及答案)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

三角形全等之倍长中线(习题) 例题示范例1:已知:如图,在ABC中,ABAC,D,E在BC上,且DE=EC,过D作DFBA交AE于点F,DF=AC求证:AE平分BAC【思路分析】读题标注:见中线,要倍长,倍长之后证全等结合此题,DE=EC,点E是DC的中点,考虑倍长,有两种考虑方法:考虑倍长FE,如图所示: 考虑倍长AE,如图所示: (这个过程需要考虑倍长之后具体要连接哪两个点)倍长中线的目的是为了证明全等:以方法为例,可证DEFCEG,由全等转移边和角,重新组织条件证明即可【过程书写】证明:如图,延长FE到G,使EG=EF,连接CG在DEF和CEG中,DEFCEG(SAS)DF=CG,DFE=GDF=ACCG=ACG=CAEDFE=CAEDFABDFE=BAEBAE=CAEAE平分BAC 巩固练习1. 已知:如图,在ABC中,AB=4,AC=2,点D为BC边的中点,且AD是整数,则AD=_2. 已知:如图,BD平分ABC交AC于D,点E为CD上一点,且AD=DE,EFBC交BD于F求证:AB=EF3. 已知:如图,在ABC中,AD是BC边上的中线,分别以AB,AC为直角边向外作等腰直角三角形,AB=AE,AC=AF,BAE=CAF=90求证:EF=2AD如图,在ABC中,AB AC,E为BC边的中点,AD为BAC的平分线,过E作AD的平行线,交AB于F,交CA的延长线于G求证:BF=CG4. 如图,在四边形ABCD中,ADBC,点E在BC上,点F是CD的中点,连接AF,EF,AE,若DAF=EAF,求证:AFEF 思考小结1. 如图,在ABC中,AD平分BAC,且BD=CD求证:AB=AC比较下列两种不同的证明方法,并回答问题方法1:如图,延长AD到E,使DE=AD,连接BE在BDE和CDA中BDECDA(SAS)AC=BE,E=2AD平分BAC1=21=EAB=BEAB=AC方法2:如图,过点B作BEAC,交AD的延长线于点EBEACE=2在BDE和CDA中BDECDA(AAS)BE=ACAD平分BAC1=21=EAB=BEAB=AC相同点:两种方法都是通过辅助线构造全等,利用全等转移条件进而解决问题方法1是看到中点考虑通过_构造全等,方法2是通过平行夹中点构造全等不同点:倍长中线的方法在证明全等时,利用的判定是_,实质是构造了一组对应边相等;利用平行夹中点证明全等时,利用的判定是_,实质是利用平行构造了一组_相等2. 利用“倍长中线”我们就可以证明直角三角形中非常重要的一个定理:直角三角形斜边中线等于斜边的一半请你尝试进行证明已知:如图,在RtABC中,BCA=90,CD是斜边AB的中线求证:CDAB【参考答案】 巩固练习1. 22. 证明略(提示:延长FD到点G,使得DG=DF,连接AG,证明ADGEDF,转角证明AB=EF)3. 证明略(提示:延长AD到点G,使得GD=AD,连接CG,证明ABDGCD,EAFGCA)4. 证明略(提示:延长FE到点H,使得EH=FE,连接CH,证明BFECHE,转角证明BF=CG)5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论