人工神经网络matlab源程序(可运行)_第1页
人工神经网络matlab源程序(可运行)_第2页
人工神经网络matlab源程序(可运行)_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人工神经网络 matlab 源程序代码,有注释%产生指定类别的样本点,并在图中绘出 X = 0 1; 0 1; % 限制类中心的范围 clusters = 5; % 指定类别数目 points = 10; % 指定每一类的点的数目 std_dev = 0.05; % 每一类的标准差 P = nngenc(X,clusters,points,std_dev); plot(P(1,:),P(2,:),+r); title(输入样本向量); xlabel(p(1); ylabel(p(2); %建立网络 net=newc(0 1;0 1,5,0.1); %设置神经元数目为5 %得到网络权值,并在图上绘出 figure; plot(P(1,:),P(2,:),+r); w=net.iw1 hold on; plot(w(:,1),w(:,2),ob); hold off; title(输入样本向量及初始权值); xlabel(p(1); ylabel(p(2); figure; plot(P(1,:),P(2,:),+r); hold on; %训练网络 net.trainParam.epochs=7; net=init(net); net=train(net,P); %得到训练后的网络权值,并在图上绘出 w=net.iw1 plot(w(:,1),w(:,2),ob); hold off; title(输入样本向量及更新后的权值); xlabel(p(1); ylabel(p(2); a=0; p = 0.6 ;0.8; a=sim(net,p) example8_2 %随机生成1000个二维向量,作为样本,并绘出其分布 P = rands(2,1000); plot(P(1,:),P(2,:),+r) title(初始随机样本点分布); xlabel(P(1); ylabel(P(2); %建立网络,得到初始权值 net=newsom(0 1; 0 1,5 6); w1_init=net.iw1,1 %绘出初始权值分布图 figure; plotsom(w1_init,net.layers1.distances) %分别对不同的步长,训练网络,绘出相应的权值分布图 for i=10:30:100 net.trainParam.epochs=i; net=train(net,P); figure; plotsom(net.iw1,1,net.layers1.distances) end %对于训练好的网络,选择特定的输入向量,得到网络的输出结果 p=0.5;0.3; a=0; a = sim(net,p) example8_3 %指定输入二维向量及其类别 P = -3 -2 -2 0 0 0 0 +2 +2 +3; 0 +1 -1 +2 +1 -1 -2 +1 -1 0; C = 1 1 1 2 2 2 2 1 1 1; %将这些类别转换成学习向量量化网络使用的目标向量 T = ind2vec(C) %用不同的颜色,绘出这些输入向量 plotvec(P,C), title(输入二维向量); xlabel(P(1); ylabel(P(2); %建立网络 net = newlvq(minmax(P),4,.6 .4,0.1); %在同一幅图上绘出输入向量及初始权重向量 figure; plotvec(P,C) hold on W1=net.iw1; plot(W1(1,1),W1(1,2),ow) title(输入以及权重向量); xlabel(P(1), W(1); ylabel(P(2), W(2); hold off; %训练网络,并再次绘出权重向量 figure; plotvec(P,C); hold on; net.trainParam.epochs=150; net.trainParam.show=Inf; ne

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论