




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第六、七讲 不等式不等式与不等关系题型一:不等式的性质1. 对于实数中,给出下列命题: ; ; ; ; ; ; ; ,则。其中正确的命题是_题型二:比较大小(作差法、函数单调性、中间量比较,基本不等式)2. 设,试比较的大小3. 比较1+与的大小4. 若,则的大小关系是 .(一) 解不等式题型三:解不等式5. 解不等式 6. 解不等式。7. 解不等式8. 不等式的解集为x|-1x2,则=_, b=_9. 关于的不等式的解集为,则关于的不等式的解集为10. 解关于x的不等式题型四:恒成立问题11. 关于x的不等式a x2+ a x+10 恒成立,则a的取值范围是_ 12. 若不等式对的所有实数都成立,求的取值范围.13. 已知且,求使不等式恒成立的实数的取值范围。(三)基本不等式题型五:求最值14. (直接用)求下列函数的值域(1)y3x 2 (2)yx15. (配凑项与系数)(1)已知,求函数的最大值。(2)当时,求的最大值。16. (耐克函数型)求的值域。注意:在应用基本不等式求最值时,若遇等号取不到的情况,应结合函数的单调性。17. (用耐克函数单调性)求函数的值域。18. (条件不等式)(1) 若实数满足,则的最小值是 .(2) 已知,且,求的最小值。(3) 已知x,y为正实数,且x 21,求x的最大值.(4) 已知a,b为正实数,2baba30,求函数y的最小值.题型六:利用基本不等式证明不等式19. 已知为两两不相等的实数,求证:20. 正数a,b,c满足abc1,求证:(1a)(1b)(1c)8abc21. 已知a、b、c,且。求证:题型七:均值定理实际应用问题:22. 某工厂拟建一座平面图形为矩形且面积为200m2的三级污水处理池(平面图如图),如果池外圈周壁建造单价为每米400元,中间两条隔墙建筑单价为每米248元,池底建造单价为每平方米80元,池壁的厚度忽略不计,试设计污水池的长和宽,使总造价最低,并求出最低造价。(四)线性规划题型八:目标函数求最值23. 满足不等式组,求目标函数的最大值24. 已知实系数一元二次方程的两个实根为、,并且,则的取值范围是 25. 已知满足约束条件: ,则的最小值是26. 已知变量(其中a0)仅在点(3,0)处取得最大值,则a的取值范围为 。27. 已知实数满足如果目标函数的最小值为,则实数等于( )题型九:实际问题28. 某饼店制作的豆沙月饼每个成本35元,售价50元;凤梨月饼每个成本20元,售价30元。现在要将这两种月饼装成一盒,个数不超过10个,售价不超过350元,问豆沙月饼与凤梨月饼各放几个,可使利润最大?又利润最大为多少?复习不等式的基本知识参考答案高中数学必修内容练习-不等式1. ;2. ;3. 当或时,1+;当时,1+;当时,1+4. ( RQP。5. 6. 或;7. );8. 不等式的解集为x|-1x2,则=_-6_, b=_6_9. ).10. 解:当a0时,不等式的解集为;2分当a0时,a(x)(x1)0;当a0时,原不等式等价于(x)(x1)0不等式的解集为;6分当0a1时,1,不等式的解集为;8分当a1时,1,不等式的解集为;10分当a1时,不等式的解为12分11. _0x4_12. )13. 14. 解:(1)y3x 22 值域为,+) (2)当x0时,yx22;当x0时, yx= ( x)2=2值域为(,22,+)15. (1)解,当且仅当,即时,上式等号成立,故当时,。(2)当,即x2时取等号 当x2时,的最大值为8。16. 解析一: 当,即时,(当且仅当x1时取“”号)。解析二:本题看似无法运用基本不等式,可先换元,令t=x1,化简原式在分离求最值。当,即t=时,(当t=2即x1时取“”号)。17. 解:令,则因,但解得不在区间,故等号不成立,考虑单调性。因为在区间单调递增,所以在其子区间为单调递增函数,故。所以,所求函数的值域为。18. (条件不等式)(1) 解: 都是正数,当时等号成立,由及得即当时,的最小值是6(2) 解:,当且仅当时,上式等号成立,又,可得时,(3) 解:xx x下面将x,分别看成两个因式:x 即xx (4) 解:法一:a, abb 由a0得,0b15令tb+1,1t16,ab2(t)34t28 ab18 y 当且仅当t4,即b3,a6时,等号成立。法二:由已知得:30aba2b a2b2 30ab2令u则u22u300, 5u3 3,ab18,y19. 已知为两两不相等的实数,求证:20. 正数a,b,c满足abc1,求证:(1a)(1b)(1c)8abc21. 已知a、b、c,且。求证:证明:a、b、c,。同理,。上述三个不等式两边均为正,分别相乘,得。当且仅当时取等号。22. 解:若设污水池长为x米,则宽为 (米)水池外圈周壁长: (米)中间隔墙长: (米)池底面积:200(米2)目标函数: 23. 424. 25. 126. 。27. 5 28. 解:设一盒內放入x个豆沙月饼,y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中小学体育与健康课程实施纲要
- 甲状腺超声分层诊断与应用
- 餐厅环境设计
- 手部卫生与健康清洁实践
- 陶喆音乐艺术成就解析
- 大班太空旅行课件
- 健康油皮的科学护理指南
- 肝外胆管恶性肿瘤
- 高校网络舆情教育体系构建
- 洗胃后健康教育要点
- 2025年 汕头市公安局警务辅助人员招聘考试笔试试卷附答案
- 脑出血的护理查房
- 天津大学强基计划校测面试题
- 2025年大学思想政治理论课程考试试卷及答案
- 合同的内容讲课件
- 2025年农村经济与管理考试试题及答案
- 夏季安全生产试题及答案
- 心身疾病病例分享
- 2025年北京高考化学试卷试题真题及答案详解(精校打印版)
- 陕西省专业技术人员继续教育2025公需课《党的二十届三中全会精神解读与高质量发展》20学时题库及答案
- 2025至2030中国汽车轮毂行业发展分析及发展前景与投资报告
评论
0/150
提交评论