数学计划总结之《圆内接四边形》教学反思_第1页
数学计划总结之《圆内接四边形》教学反思_第2页
数学计划总结之《圆内接四边形》教学反思_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学计划总结之圆内接四边形教学反思 今天,教学内容是圆内接四边形,这是继圆周角教学内容之后的第二个课时。教学内容是通过上一节所学的“圆周角定理”得出“圆内接四边形的对角互补”,其中还需要讲解“圆内接四边形”概念,及例题。我初步设计的教学方案是:通过习题回顾-引出图形“圆和四边形”-介绍圆内接四边形的概念-提出讨论:是否每一个四边形均有外接圆?-引发探讨:圆内接平行四边形(菱形、梯形等)是什么特殊四边形?为什么?(合作交流)-例题讲解(学生探究)-自主练习-总结归纳-布置自行设计的作业(涉及到圆周角定理及圆内接四边形定理的题目,因课本后没有相应练习)。开始的教学非常顺利,习题回顾对学生巩固昨天所学起到很好的作用,说明“圆周角”的内容学生应该基本掌握。而且这道题的图形正好出现“圆与四边形”,顺其自然地,我很自然地提出“圆内接四边形”的概念,并加以讲解。当我提出问题:是否每一个四边形均有外接圆?此时,学生进入到沉思时间,学生们的思想正在高速运行。令我惊讶的是,短时间中就有学生回答:不一定,理由是必须满足“四个顶点到同一个定点的距离相等。”学生的回答让我高兴,说明学生对一个多边形能否有外接圆的要求理解透彻!还说明学生对“圆”的概念理解深刻,还能证明我所教的学生的思维敏捷,反应迅速,综合能力强!紧接下来,为了保持这种良好的思维程度,调动所有学生参与讨论的积极性,我马上提出问题:圆内接平行四边形是( )。这是一个填空问题,按理说,前面的问题都能很快回答出来,这种题目对学生来说应该简单。但是,出乎预料的是,学生说道的答案竟然有“矩形、正方形”,此时的我,真的不知道说什么好!竟然有一个数学还好的学生说:矩形或正方形。我马上说:学生还分小学、初中、高中生。他竟然没有反映!但是很多同学反映了,只能是矩形。这位同学可能是站着很紧张,可以愿谅的。当大家都认可之后,我提出问题:为什么?所有学生都沉默了!时间在流失,离下课时间越来越少了。本来才40分钟,不能这样流失。我说:有没有一点思路?接下来又说:证明一个平行四边形有哪些方法?学生在想,有学生在轻轻回答,当然,他们能把如何证明一个平行四边形是矩形的方法说出来,这点我表扬了他们。我想还是让学生来答证明方法,必竟是很容易的。但是,我也想不到的结果出现了。学生1:因为对边平行,所以邻角互补,又因为另一组对边平行,所以另一组对角互补,所以有角相等。同理,对角相等。当我听到这时,我吃惊了!我说:为什么要证平行四边形对角相等?难道没有学过吗?(因为筹建宜春八中,没有上他们的课),但学生们都说:学过!学生2:证明四个角是直角。学生3:证明有一个角为直角种种方法,让我哭笑不得。我没有想到,学生对四边形的知识是这样的贫乏。基本理论的缺失,真的让学生解决问题无从下手。我想:这节课我一定会拖堂的(因为我上课从未出现过拖堂现象,但今天必须,我没有办法了)!我只有自行解说了:平行四边形,对角相等;又是圆内接四边形,所以对角互补,所以这两个角都等于90度。所以这个平行四边形是矩形!学生听后,大声笑了,他们说这么简单?我说:就这么简单,难道你认为有错吗?学生说:没有。课后,我想,为什么学生这么简单的问题都答不出?根据学生这节

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论