武汉理工大学概率论与数理统计英文版试题_第1页
武汉理工大学概率论与数理统计英文版试题_第2页
武汉理工大学概率论与数理统计英文版试题_第3页
武汉理工大学概率论与数理统计英文版试题_第4页
武汉理工大学概率论与数理统计英文版试题_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

试卷装订线 装订线内不要答题,不要填写考生信息试卷装订线 学 院 专业 班级 学 号 姓 名 武汉理工大学考试试卷(A 卷) 2010 2011 学年学年 1 学期 概率论与数理统计 学期 概率论与数理统计 课程课程 时间时间 120 分钟分钟 56 学时,学时, 3 学分,闭学分,闭卷,总分卷,总分 100 分,占总评成绩分,占总评成绩 80 % 2011 年年 1 月月 5 日日 题号 一 二 三 四 五 六 七 八 九 十 合计 满分 100 得分 ,995. 0)567. 2(,99. 0)327. 2( ,9772. 0)2(,975. 0)96. 1 (,95. 0)645. 1 (,8413. 0) 1 (, 5 . 0)0( = = I. Fill in the blanks ( 3 10). 1. Put 3 balls into 4 boxes randomly. The probability of that there is at most one ball in each box is ;古典概率的计算 2. Suppose A and B are independent, and P(A) = 0.6 and P(A+B) = 0.8. Then P(BA) = ; 由事件的关系和运算以及概率的性质等计算事件的概率 3. SupposeXhas a Poisson distribution with , 1= then =)(XEXP ; 4. Supposeand the probability of that has no real root is 0.5. then ),( 2 NX04 2 =+Xyy = ;一维离散型和连续型随机变量概率分布,常见分布 5. Suppose has ,then ),(YX = + otherwise yxe yxf yx ,0 0, 0,2 ),( )2( = XYP ;二维 6. Suppose that XN(0, 1),Y U(0, 1), and A and B are independent. Then D(X-2Y+4) = ; 7. Suppose that X and Y have the same distribution and ,5 . 0),1 . 0,20(= XY BXthen =+)(YXD;数字特征的计算:常见分布的期望和方差,计算性质 8. Suppose that that X1, X2, , X6 is a random sample from and has adistribution. Then ).1 , 0(NX 2 321 )(XXXY+= 2 654 )(XXX+cY 2 =c ;抽样分布 9. Suppose thatis a random sample from 4321 ,XXXX)(EXand )( 4321 XXXXT+= is the unbiased estimator .of . Then 1 = ; 无偏估计的概念 10. Suppose that X1, X2, , Xn are a random sample from X and are unknown. The confidence interval for ),( 2 N 2 , is with confidence coefficient1. 区间估计 得分 试卷所需的查表数据 1 II. (In a city, 50.2 percent of the people are men and 49.8 percent of the people are women. Records show that the probability that a man has a certain disease is 0.05 and the probability that a woman has the disease is 0.01. If a person in the city is selected at random, a) find the probability that he has the disease. b) find the probability that the person is a woman given that the person is found to have the disease. 全概率公式及贝叶斯公式 )0 1 要求:1.必须要设事件 2.将题目所给的数据用概率的形式给出来 3.要有公式 详细过程见 exercise 3,习题课里每个题目都写了详细的过程 III. ().Suppose that the p.d.f. of a random variable X is as follows: 01 = 4 |, 0 4 |,cos )( x xxA xf a) Find the value of the constant A and 6 0 XP ; b)Find the distribution function F(x) of X . 一维连续型随机变量的分布,详见 exercise 6 的 2、3 两题 得分 得分 2 IV.() Suppose that the length of life of a certain electrical component has an exponential distribution with 100hour as its mean. Randomly taking 16 such components now, what is the probability that the total length of life of these components is more than 2000 hours? (Use the Central Limit Theorems) 0 1 利用中心极限定理计算,详见 exercise 12,参考答案已经上传在参考资源里 要求:1.要设变量 2.用中心极限定理是近似计算,要用 V. () SupposeDetermine the p.d.f. of . 0 1 ),2(EX X eY 2 1 = 随机变量函数的分布 这部分内容上过习题课,exercise 7 再次强调:一定要用分布函数法求解 VI. () Given that X and Y have the following distribution: 01 X -1 0 1 Y 0 1 p 1/4 1/2 1/4 p 1/2 1/2 and.a) Find the joint distribution of 10=XYP()YX,; b) Determine whether or not X and Y are independent. 二维离散型随机变量的联合分布、边缘分布、条件分布和独立性的判断 得分 得分 得分 3 VII()Suppose that X has the following distribution: 01 X 1 2 3 p 2 )1 (2 2 )1 ( where the parameter) 10( is unknown. Given the observed value , 2, 1 12 =xx 1 3 =x, determine the moment estimators and the maximum likelihood estimator of. 点估计,详见 exercise 14,参考答案已经上传在参考资源里 VIII. (1)It is claimed that an automobile is driven on the average less than 20000km per year. To test this claim, a random sample of 100 automobile owners are asked to keep a record of the km they travel. Would you agree this claim if the random sample

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论