已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
首届中国大学生数学竞赛赛区赛试卷(非数学类,2009)一、填空题(每小题5分,共20分)1计算_,其中区域由直线与两坐标轴所围成三角形区域.解 令,则, (*)令,则,2设是连续函数,且满足, 则_.解 令,则,,解得。因此3曲面平行平面的切平面方程是_.解 因平面的法向量为,而曲面在处的法向量为,故与平行,因此,由,知,即,又,于是曲面在处的切平面方程是,即曲面平行平面的切平面方程是。4设函数由方程确定,其中具有二阶导数,且,则_.解法1 方程的两边对求导,得即因,故,即,因此解法2 方程取对数,得 (1)方程(1)的两边对求导,得 (2)即 (3)方程(2)的两边对求导,得 (4)将(3)代入(4),得将左边的第一项移到右边,得因此二、(5分)求极限,其中是给定的正整数.解法1 因故因此解法2 因故三、(15分)设函数连续,且,为常数,求并讨论在处的连续性.解 由和函数连续知,因,故,因此,当时,故当时,这表明在处连续.四、(15分)已知平面区域,为的正向边界,试证:(1);(2).证 因被积函数的偏导数连续在上连续,故由格林公式知(1)而关于和是对称的,即知因此(2)因故由知即五、(10分)已知,是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.解 设,是二阶常系数线性非齐次微分方程的三个解,则和都是二阶常系数线性齐次微分方程的解,因此的特征多项式是,而的特征多项式是因此二阶常系数线性齐次微分方程为,由和,知,二阶常系数线性非齐次微分方程为六、(10分)设抛物线过原点.当时,又已知该抛物线与轴及直线所围图形的面积为.试确定,使此图形绕轴旋转一周而成的旋转体的体积最小.解 因抛物线过原点,故,于是即而此图形绕轴旋转一周而成的旋转体的体积为即令,得即因此,.七、(15分)已知满足, 且, 求函数项级数之和.解 ,即由一阶线性非齐次微分方程公式知即因此由知,于是下面求级数的和:令则即由一阶线性非齐次微分方程公式知令,得,因此级数的和八、(10分)求时, 与等价的无穷
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年健康食品产业布局可行性研究报告及总结分析
- 2025年智能家居系统整体解决方案可行性研究报告及总结分析
- 2024年泰安岱岳中小学教师招聘真题
- 2025年清洁空气城市监测系统可行性研究报告及总结分析
- 2025年罗非鱼养殖技术合作协议
- 2025年特色小镇发展战略研究可行性报告
- 2025年 灌南县事业单位工作人员聘考试笔试试题含答案
- 2025年老年食堂服务协议
- 2025年人工智能医疗服务应用可行性研究报告及总结分析
- 2025年老年人智能化生活服务平台可行性研究报告及总结分析
- 幼儿园中的自然教育对孩子的影响
- 植物生产类专业职业生涯规划书
- 中国胃食管反流病诊疗规范(2023版)解读
- 高中学生学籍表模板(范本)
- 膳食营养指导和疾病预防(卢世琰)课件
- 办公楼建筑能源管理平台技术方案书
- 河南省铭玮昊化工科技有限公司年产1000吨溴硝醇、100吨磺酰胺、200吨叔丁酯项目环境影响报告书
- 灭火器检查记录表模板实用文档
- 《赢利 未来10年的经营能力》读书笔记PPT模板思维导图下载
- 2023年成都交子金融控股集团有限公司招聘考试备考题库及答案解析
- YS/T 337-2009硫精矿
评论
0/150
提交评论