机器人学基础_第7章_机器人轨迹规划.ppt_第1页
机器人学基础_第7章_机器人轨迹规划.ppt_第2页
机器人学基础_第7章_机器人轨迹规划.ppt_第3页
机器人学基础_第7章_机器人轨迹规划.ppt_第4页
机器人学基础_第7章_机器人轨迹规划.ppt_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中南大学蔡自兴,谢斌zxcai,xiebin2010,机器人学基础第七章机器人轨迹规划,1,Ch.7TrajectoryPlanningofRobots,FundamentalsofRobotics,FundamentalsofRobotics,Ch.7TrajectoryPlanningofRobots,2,Ch.7TrajectoryPlanningofRobots,Ch.7TrajectoryPlanningofRobots,3,Ch.7TrajectoryPlanningofRobots,7.1GeneralConsiderationsinTrajectoryPlanning轨迹规划应考虑的问题,BasicProblem:Movethemanipulatorarmfromsomeinitialpositiontosomedesiredfinalposition(Maybegoingthroughsomeviapoints).,4,7.1Generalconsiderations,7.1GeneralConsiderationsinTrajectoryPlanning,Trajectory:Timehistoryofposition,velocityandaccelerationforeachDOFPathpoints:Initial,finalandviapointsConstraints:Spatial,time,smoothness,5,7.1Generalconsiderations,JointspaceEasytogothroughviapoints(Solveinversekinematicsatallpathpoints)NoproblemswithsingularitiesLesscalculationsCannotfollowstraightlineCartesianspaceWecantrackashape(fororientation:equivalentaxes,Eulerangles,)Moreexpensiveatruntime(afterthepathiscalculatedneedjointanglesinalotofpoints)Discontinuityproblems,6,GeneralConsiderations-SolutionSpace,7.1Generalconsiderations,Cartesianplanningdifficulties:,7,GeneralConsiderations-SolutionSpace,7.1Generalconsiderations,Initial(A)andGoal(B)Pointsarereachable,butintermediatepoints(C)unreachable.,Ch.7TrajectoryPlanningofRobots,8,Ch.7TrajectoryPlanningofRobots,Joint-SpaceSchemesEachpathpointisconvertedintoasetofdesiredjointanglesbyapplicationoftheinversekinematics.Asmoothfunctionisfoundforeachofthenjointswhichpassthroughtheviapointsandendatthegoalpoint.Timerequiredforeachsegmentisthesameforeachjoint.Thedeterminationofthedesiredjointanglefunctionforaparticularjointisindependentwithotherjoints.,9,7.2InterpolatedCalculationofJointTrajectories关节轨迹的插值计算,7.2JointSpaceSchemes,Choiceofinterpolationfunctionisnotunique!,10,Joint-SpaceSchemes,7.2JointSpaceSchemes,Severalpossiblepathshapesforasinglejoint.,Somepossibleinterpolationfunctions:CubicpolynomialsCubicpolynomialsforapathwithviapointsHigher-orderpolynomialsLinearfunctionwithparabolicblendsLinearfunctionwithparabolicblendsforapathwithviapoints,11,Joint-SpaceSchemes,7.2JointSpaceSchemes,Inmakingasinglesmoothmotion,atleastfourconstraintsonareevident:,12,7.2.1CubicPolynomials三次多项式插值,7.2JointSpaceSchemes,Combiningthefourconstraintsyieldsfourequationswithfourunknowns:,13,7.2.1CubicPolynomials,7.2JointSpaceSchemes,Thesefourconstraintsuniquelyspecifyaparticularcubic:,14,7.2.1CubicPolynomials,Thejointvelocityandaccelerationalongthispathare:,7.2JointSpaceSchemes,Eg.7.1Asingle-linkrobotwitharotaryjointismotionlessat=15degrees.Itisdesiredtomovethejointinasmoothmannerto=75degreesin3seconds.Findthecoefficientsofacubicwhichaccomplishesthismotionandbringsthemanipulatortorestatthegoal.Plottheposition,velocity,andaccelerationofthejointasafunctionoftime.,15,7.2.1CubicPolynomials,7.2JointSpaceSchemes,Solution:Plugging0=15,f=75,tf=3into(7.6),wefind,16,7.2.1CubicPolynomials,7.2JointSpaceSchemes,Solution:,17,7.2.1CubicPolynomials,7.2JointSpaceSchemes,Startsat15degreesandendsat75degrees!,Solution:,18,7.2.1CubicPolynomials,7.2JointSpaceSchemes,Startsandendsatrest!,Solution:,19,7.2.1CubicPolynomials,7.2JointSpaceSchemes,Accelerationprofileislinear!,Ifwecometorestateachpointuseformulafrompreviousslideorcontinuousmotion(nostops)needvelocitiesatintermediatepoints:InitialConditions:,20,7.2.2Cubicpolynomialswithviapoints过路径点的三次多项式插值,7.2JointSpaceSchemes,Solutions:,Howtospecifyvelocityattheviapoints:TheuserspecifiesthedesiredvelocityateachviapointintermsofaCartesianlinearandangularvelocityofthetoolframeatthatinstant.ThesystemautomaticallychoosesthevelocitiesattheviapointsbyapplyingasuitableheuristicineitherCartesianspaceorjointspace(averageof2sidesetc.).Thesystemautomaticallychoosesthevelocitiesattheviapointsinsuchawayastocausetheaccelerationattheviapointstobecontinuous.,21,7.2JointSpaceSchemes,7.2.2Cubicpolynomialswithviapoints,Higherorderpolynomialsaresometimesusedforpathsegments.Forexample,ifwewishtobeabletospecifytheposition,velocity,andaccelerationatthebeginningandendofapathsegment,aquinticpolynomialisrequired:,22,7.2.3Higher-orderpolynomials高阶多项式插值,7.2JointSpaceSchemes,Wheretheconstraintsaregivenas:,23,7.2.3Higher-orderpolynomials,7.2JointSpaceSchemes,Solutiontotheseequations:,24,7.2.3Higher-orderpolynomials,7.2JointSpaceSchemes,Linearinterpolation(Straightline):Note:Althoughthemotionofeachjointinthisschemeislinear,theend-effectoringeneraldoesnotmoveinastraightlineinspace.,25,7.2.4Linearfunctionwithparabolicblends用抛物线过渡的线性插值,7.2JointSpaceSchemes,Discontinuousvelocity-cannotbecontrolled!,Tocreateasmoothpathwithcontinouspositionandvelocity,westartwiththelinearfunctionbutaddaparabolicblendregionateachpathpoint.Constantaccelerationisusedduringtheblendportiontochangevelocitysmoothly.,26,7.2.4Linearfunctionwithparabolicblends,7.2JointSpaceSchemes,Assumethattheparabolicblendsbothhavethesameduration,andthereforethesameconstantacceleration(moduloasign).Therearemanysolutionstotheproblem-buttheanswerisalwayssymmetricaboutthehalfwaypoint.,27,7.2.4Linearfunctionwithparabolicblends,7.2JointSpaceSchemes,Thevelocityattheendoftheblendregionmustequalthevelocityofthelinearsection:,28,7.2.4Linearfunctionwithparabolicblends,7.2JointSpaceSchemes,Lett=2th,combining(7.13)and(7.14),29,7.2.4Linearfunctionwithparabolicblends,Theaccelerationchosenmustbesufficientlyhigh,toensuretheexistenceofasolution:,7.2JointSpaceSchemes,Belowshowsasetofjointspaceviapointsforsomejoints.Linearfunctionsconnecttheviapoints,andparabolicblendregionsareaddedaroundeachviapoint.,30,7.2.5Linearfunctionwithparabolicblendsforapathwithviapoints,过路径点的用抛物线过渡的线性插值,7.2JointSpaceSchemes,Multi-segmentlinearpathwithblends.,Given:positionsdesiredtimedurationsthemagnitudesoftheaccelerationsCompute:blendstimesstraightsegmenttimesslopes(velocities)signedaccelerations,31,7.2JointSpaceSchemes,7.2.5Linearfunctionwithparabolicblendsforapathwithviapoints,Insidesegment:,32,7.2JointSpaceSchemes,7.2.5Linearfunctionwithparabolicblendsforapathwithviapoints,Firstsegment:,33,7.2JointSpaceSchemes,7.2.5Linearfunctionwithparabolicblendsforapathwithviapoints,Lastsegment:,34,7.2JointSpaceSchemes,7.2.5Linearfunctionwithparabolicblendsforapathwithviapoints,Togothroughtheactualviapoints:Introduce“PseudoViaPoints”Usesufficientlyhighacceleration,35,7.2JointSpaceSchemes,7.2.5Linearfunctionwithparabolicblendsforapathwithviapoints,Ch.7TrajectoryPlanningofRobots,36,Ch.7TrajectoryPlanningofRobots,WhenpathshapesaredescribedintermsoffunctionsofCartesianpositionandorientation,wecanalsospecifythespatialshapeofthepathbetweenpathpoints.Themostcommonpathshapeisastraightline;butcircular,sinusoidal,orotherpathshapescouldbeused.Cartesianschemesaremorecomputationallyexpensivetoexecutesinceatruntime,inversekinematicsmustbesolvedatthepathupdaterate.,7.3Cartesian-SpaceSchemes,37,7.3Cartesian-SpaceSchemes,Descriptionofatask,7.3Cartesian-SpaceSchemes,38,7.3Cartesian-SpaceSchemes,CartesianstraightlinemotionMovefrompointPitoPi+1,whichdescribedbyrelativehomogenoustransformation:,7.3Cartesian-SpaceSchemes,39,7.3Cartesian-SpaceSchemes,Inordertoensurecontinuousvelocitiesintrajectory,asplineoflinearfunctionswithparabolicblendsisalwaysused.Duringthelinearportionofeachsegment,sinceallthreecomponentsofpositionchangeinalinearfashion,theend-effectorwillmovealongalinearpathinspace.,7.3Cartesian-SpaceSchemes,40,7.3Cartesian-SpaceSchemes,Cartesianplanningdifficulties(1/3):,41,Initial(A)andGoal(B)Pointsarereachable,butintermediatepoints(C)unreachable.,7.3Cartesian-SpaceSchemes,7.3Cartesian-SpaceSchemes,42,Approachingsingularitiessomejointvelocitiesgotocausingdeviationfromthepath.,7.3Cartesian-SpaceSchemes,7.3Cartesian-SpaceSchemes,Cartesianplanningdifficulties(2/3):,43,Startpoint(A)andgoalpoint(B)arereachableindifferentjointspacesolutions(Themiddlepointsarereachablefrombelow.),7.3Cartesian-SpaceSchemes,7.3Cartesian-SpaceSchemes,Cartesianplanningdifficulties(3/3):,Ch.7TrajectoryPlanningofRobots,44,Ch.7TrajectoryPlanningofRobots,7.4PathGenerationatReal-Time,Atruntimethepathgeneratorroutineconstructsthetrajectory,usuallyintermsof,andfeedsthisinformationtothemanipulatorscontrolsystem.Thispathgeneratorcomputesthetrajectoryatthepathupdaterate.,7.4PathGenerationatRunTime,45,7.4.1Generationofjointspacepaths,Inthecaseofcubicsplines,thepathgeneratorsimplycomputes(7.3)and(7.4)astisadvanced.Whentheendofonesegmentisreached,anewsetofcubiccoefficientsisrecalled,tissetbacktozero,andthegenerationcontinues.,7.4PathGenerationatRunTime,46,Inthecaseoflinearsplineswithparabolicblends,thevalueoftime,t,ischeckedoneachupdatetodeterminewhetherwearecurrentlyinthelinearortheblendportionofthesegment.Inthelinearportion,thetrajectoryforeachjointiscalculatedas,7.4PathGenerationatRunTime,47,7.4.1Generationofjointspacepaths,Inthecaseoflinearsplineswithparabolicblends,thevalueoftime,t,ischeckedoneachupdatetodeterminewhetherwearecurrentlyinthelinearortheblendportionofthesegment.Intheblendregion,thetrajectoryforeachjointiscalculatedas,7.4PathGenerationatRunTime,48,7.4.1Generationofjointspacepaths,Inthecaseoflinearsplinewithparabolicblendspath.Rewrite(7.45)and(7.46)withthesymbolXrepresentingacomponentoftheCartesianpositionandorientationvector.Inthelinearportionofthesegment,eachdegreeoffreedominXiscalcuatedas,7.4PathGenerationatRunTime,49,7.4.2GenerationofCartesianspacepaths,Inthecaseo

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论