


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
巧用“三线合一”解决几何问题 等腰三角形的性质:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(即“三线合一”)。在几何计算和论证过程中,若能巧妙地利用这个性质解题,将起到事半功倍的效果。 例1. 等腰三角形顶角为,一腰上的高与底边所夹的角是,则与的关系式为=_。图1 分析:如图1,AB=AC,BDAC于D,作底边BC上的高AE,E为垂足,则可知EAC=EAB,又,所以。 例2. 已知:如图2,ABC中,AB=AC,CEAE于E,E在ABC外,求证:ACE=B。图2 分析:欲证ACE=B,由于AC=AB,因此只需构造一个与RtACE全等的三角形,即做底边BC上的高即可。 证明:作ADBC于D, AB=AC, 又, BD=CE。 在RtABD和RtACE中, ABAC,BD=CE, RtABDRtACE(HL)。 ACE=B 例3. 已知:如图3,等边三角形ABC中,D为AC边的中点,E为BC延长线一点,CE=CD,DMBC于M,求证:M是BE的中点。图3 分析:欲证M是BE的中点,已知DMBC,因此只需证DB=DE,即证DBE=E,根据等边ABC,BD是中线,可知DBC=30,因此只需证E=30。 证明:联结BD, ABC是等边三角形, ABC=ACB=60 CD=CE, CDE=E=30 BD是AC边上中线, BD平分ABC,即DBC=30 DBE=E。 DB=DE 又DMBE, DM是BE边上的中线,即M是BE的中点。练习 1. 如图4,墙上钉了一根木条,小明想检验这根木条是否水平,他拿来一个如图所示的测平仪,在这个测平仪中,AB=AC,BC边的中点D处有一个重锤,小明将BC边与木条重合,观察此重锤是否通过A点,如通过A点,则是水平的,你能说明其中的道理吗?图4 2. 已知:如图5,在RtABC中,ACB=90,AC=BC,D是AB的中点,E、F分别在AC、BC上,且EDFD,求证:S四边形CEDF。图5年级初中学科数学版本期数内容标题巧用“三线合一”解决几何问题分类索引号G.622.46分类索引描述辅导与自学主题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 26941-2025隔离栅
- 物业承包合同下新增厨师补充协议范文8篇
- 压力真空罐安全培训流程课件
- 2025年区块链行业区块链技术应用前景与金融改革研究报告
- 2025年物联网行业物联网技术应用前景研究报告
- 2025年火箭航天行业商业化前景预测报告
- 2025年环保行业绿色环保产品市场前景研究报告
- 2025年虚拟现实行业VR技术与虚拟现实应用前景研究报告
- 商品车电器使用培训课件
- 商品混凝土安全技术培训课件
- 股权代持协议(模板)8篇
- 《AI创意课件之设计》课件
- 医院会计笔试题目及答案
- 河南豫信电科所属公司招聘笔试题库2025
- GB/T 45345-2025金属及其他无机覆盖层工程用直流磁控溅射银镀层镀层附着力的测量
- 无人机教员聘用协议书
- 药物非临床研究质量管理规范
- 脑科生理病理图谱解读
- 全国青少年科技辅导员专业水平认证笔试考题
- (行业)常用表面处理工艺详解(行业讲座教学培训课件)
- 配电网安健环设施标准
评论
0/150
提交评论