




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章:丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。2.生活中的立体图形 圆柱(圆柱的侧面是曲面,底面是圆)柱生活中的立体图形 球 棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、 (棱柱的侧面是若干个小长方形构成,底面是多边形)(按名称分) 锥 圆锥(圆锥的侧面是曲面,底面的圆)棱锥(棱锥的侧面是若干个三角形构成,底面是多边形) 3、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。线:面和面相交的地方是线,分为直线和曲线。面:包围着体的是面,分为平面和曲面。体:几何体也简称体。 (2)点动成线,线动成面,面动成体。 4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。侧棱:相邻两个侧面的交线叫做侧棱。n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。 5、正方体的平面展开图:11种33型222型总结: 中间四个面,上下各一面;中间三个面,一二隔河见;中间两个面,楼梯天天见;中间没有面,三三连一线6、 其他常见图形的平面展开图: 侧面可以展开成长方形的是:圆柱和棱柱 侧面可以展开为扇形的是: 圆锥7 截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。 可能出现的:锐角三角型、等边、等腰三角形, 正方形、矩形、非矩形的平行四边形、 非等腰梯形、 等腰梯形、 五边形、六边形、正六边形不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形8 三视图物体的三视图指主视图、俯视图、左视图。主视图:从正面看到的图,叫做主视图。左视图:从左面看到的图,叫做左视图。俯视图:从上面看到的图,叫做俯视图。注意:从立体图得到它的三视图是唯一的,但从三视图复原回它的立体图却不一定唯一。 9 多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。1.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。2.若用f表示正多面体的面数,e表示棱数,v表示顶点数,则有:f+v-e=2弧:圆上A、B两点之间的部分叫做弧。扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。题型讲解1.认识立体几何:1.直四棱柱,长方体和正方体之间的包含关系是(A)ABCD考点:认识立体图形分析:根据正方体,长方体,直四棱柱的概念和定义即可解解答:解:正方体是特殊的长方体,长方体又是特殊的直四棱柱,故选A点评:本题考查了直四棱柱,长方体和正方体之间的包含关系2)如图,立体图形由小正方体组成,这个立体图形有小正方体()A9个B10个C11个D12个考点:认识立体图形分析:仔细观察图,从左向右依次相加即解注意被挡住的一个解答:解:这个立体图形有小正方体5+2+1+3=11个5故选C点评:解决此类问题,注意不要忽略了被挡住的小正方体3. 下列说法错误的是(B)A长方体、正方体都是棱柱B三棱柱的侧面是三角形C直六棱柱有六个侧面、侧面为长方形D球体的三种视图均为同样大小的图形考点:认识立体图形分析:根据立体图形的概念和定义进行分析即解解答:解:棱柱由上下两个底面以及侧面组成;上下两个底面可以是全等的多边形,所以表面可能出现三角形;侧面是四边形长方体、正方体符合三棱柱的侧面是应是四边形故选B点评:本题主要考查棱柱的特征:上下底面可以是任意多边形,但侧面一定是四边形4. 如图,在正方体中,AA1与AB,CC1,A1D1的关系分别是(A)A垂直、平行、垂直B垂直、垂直、平行C垂直、平行、平行D以上都不对考点:认识立体图形分析:在正方体中,同一个面上相邻的棱是互相垂直的,不相邻的棱是互相平行的所以AA1与AB,CC1,A1D1的关系分别是垂直、平行、垂直解答:解:根据以上分析知:AA1与AB,CC1,A1D1的关系分别是垂直、平行、垂直故选A点评:同一平面内两直线的位置关系有两种情况:相交和平行,其中垂直属于相交5. 探究:将一个正方体表面全部涂上颜色(1)把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体,我们把仅有i个面涂色的小正方体的个数记为xi,那么x3= 88,x2= 1212,x1= 66,x0= 11;(2)如果把正方体的棱四等分,同样沿等分线把正方体切开,得到64个小正方体,那么x3= 88,x2= 2424,xl= 2424,x0= 88;(3)如果把正方体的棱n等分(n3),然后沿等分线把正方体切开,得到n3个小正方体,那么:x3= 88,x2= 12(n-2)12(n-2),x1= 6(n-2)26(n-2)2,x0= (n-2)3(n-2)3;考点:认识立体图形专题:规律型分析:(1)根据图示:在原正方体的8个顶点处的8个小正方体上,有3个面涂有颜色;2个面涂有颜色的小正方体在每条棱的中间,共有12个;1个面涂有颜色的小正方体有6个,分布在每个面的中心;没有涂上颜色的小正方体有1个,在原正方体的中心(2)根据图示可发现定点处的小方块三面涂色,除顶点外位于棱上的小方块两面,涂色位于表面中心的一面涂色,而处于正中心的则没涂色(3)由特殊推广到一般即可得到n等分时所得小正方体表面涂色情况解答:解:(1)根据长方体的分割规律可得x3=8,x2=12,x1=6,x0=1;(2)把正方体的棱四等分时,顶点处的小正方体三面涂色共8个;有一条边在棱上的正方体有24个,两面涂色;每个面的正中间的4个只有一面涂色,共有24个;正方体正中心处的8个小正方体各面都没有涂色故x3=8,x2=24,x1=24,x0=8;(3)由以上可发现规律:三面涂色8,二面涂色12(n-2),一面涂色6(n-2)2,各面均不涂色(n-2)3点评:主要考查了立体图形的认识和用特殊归纳一般规律的方法关键是通过正方体的特点来得到有关涂色情况的规律二点 线 面 体1. 将如图所示的直角梯形绕直线l旋转一周,得到的立体图形是()ABCD考点:点、线、面、体分析:根据直角梯形上下底不同得到旋转一周后上下底面圆的大小也不同,进而得到旋转一周后得到的几何体的形状解答:解:题中的图是一个直角梯形,上底短,下底长,绕对称轴旋转后上底形成的圆小于下底形成的圆,因此得到的立体图形应该是一个圆台故选D点评:本题属于基础题,主要考查学生是否具有基本的识图能力,以及对点、线、面、体之间关系的理解2. )如图所示的RtABC绕直角边AB旋转一周,所得几何体的主视图为()ABCD考点:点、线、面、体;简单几何体的三视图分析:圆锥的主视图是从物体正面看,所得到的图形解答:解:如图所示的RtABC绕直角边AB旋转一周,所得几何体为圆锥,它的主视图为等腰三角形故选C点评:本题考查了几何体的主视图,掌握定义是关键3. 小军将一个直角三角板(如图)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是()ABCD考点:点、线、面、体分析:先根据面动成体得到圆锥,进而可知其侧面展开图是扇形解答:解:直角三角板(如图)绕它的一条直角边所在的直线旋转一周形成一个圆锥,那么它的侧面展开得到的图形是扇形故选D点评:主要考查了圆锥的侧面展开图和面动成体的道理4. 给出以下四种说法:(1)矩形绕着它的一条边旋转一周,形成圆柱;(2)梯形绕着它的下底旋转一周,形成圆柱;(3)直角三角形绕着它的一条直角边旋转一周,形成圆锥;(4)直角梯形绕着垂直于底边的腰旋转一周,形成圆锥其中,说法正确的是()A(1)(2)B(1)(3)C(2)(3)D(2)(4)考点:点、线、面、体分析:根据矩形、梯形、直角三角形、直角梯形面动成体的原理即可解解答:解:(1)矩形绕着它的一条边旋转一周,形成圆柱,正确;(2)梯形绕着它的下底旋转一周,不形成圆柱,错误;(3)直角三角形绕着它的一条直角边旋转一周,形成圆锥,正确;(4)直角梯形绕着垂直于底边的腰旋转一周,形成圆台,错误正确的是(1)(3)故选B点评:解决本题的关键是掌握各种面动成体的特征5. 将三角形绕图中的直线l旋转一周,可以得到右图所示的几何体的是()ABCD考点:点、线、面、体分析:如图本题是一个平面图形围绕一条边为中心对称轴旋转一周根据面动成体的原理即可解解答:解:绕三角形一条边旋转可得到圆锥本题要求得到两个圆锥的组合体,那么一定是两个三角形的组合体:两条直角边相对,绕另一直边旋转而成的故选B点评:本题考查面动成体,需注意可把较复杂的体分解来进行分析三图形展开与折叠1. )一个几何体的展开图如图所示,这个几何体是() A三棱柱B三棱锥C四棱柱D四棱锥考点:几何体的展开图分析:通过图片可以想象出该物体由三条棱组成,底面是三角形,符合这个条件的几何体是三棱柱解答:解:如图,考生可以发挥空间想象力可得出该几何体底面为一个三角形,由三条棱组成,故该几何体为三棱柱故选:A点评:本题考查了由三视图确定几何体的形状,主要培养学生空间想象能力及动手操作能力2. )将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是() ABCD考点:几何体的展开图专题:几何图形问题分析:由平面图形的折叠及立体图形的表面展开图的特点解题注意带图案的三个面相交于一点解答:解:由原正方体知,带图案的三个面相交于一点,而通过折叠后A、B都不符合,且D折叠后图案的位置正好相反,所以能得到的图形是C故选C点评:考查了几何体的展开图,解决此类问题,要充分考虑带有各种符号的面的特点及位置3. 将如图正方体的相邻两面上各画分成九个全等的小正方形,并分别标上O、两符号若下列有一图形为此正方体的展开图,则此图为() ABCD考点:几何体的展开图分析:此题主要根据O、两符号的上下和左右位置判断,可用排除法解答:解:由已知图可得,O、两符号的上下位置不同,故可排除A、B;又注意到O、两符号之间的空行有3列,故选C点评:此题主要考查学生的空间想象能力和读图能力4. 下列图形中,不能表示长方体平面展开图的是()ABCD考点:几何体的展开图分析:由平面图形的折叠及正方体的展开图解题解答:解:选项A,B,C经过折叠均能围成长方体,D两个底面在侧面的同一侧,缺少一定底面,所以不能表示长方体平面展开图故选D点评:解题时勿忘记四棱柱的特征及正方体展开图的各种情形5. 如图六个平面图形中,有圆柱、圆锥、三棱柱(它的底面是三边相等的三角形)的表面展开图,请你把立体图形与它的表面展开图用线连起来考点:几何体的展开图分析:结合圆柱、圆锥、三棱柱展开图的特点进行连线注意圆柱是上下两个圆形的底面和一个长方形侧面组成,圆锥是一个扇形和一个底面圆组成,三棱柱是两个三角形和三个长方形组成解答:解:点评:熟记常见立体图形的平面展开图的特征是解决此类问题的关键6. 下图是一个长方体纸盒的展开图,请把-5,3,5,-1,-3,1分别填入六个长方形,使得按虚线折成长方体后,相对面上的两数互为相反数考点:几何体的展开图;专题:正方体相对两个面上的文字专题:几何图形问题分析:根据题意,找到相对的面,把互为相反数的数字分别填入即可解答:解:如图所示:点评:本题考查灵活运用长方体的相对面解答问题,立意新颖,是一道不错的题7在学习了立体图形及其展开图后,喜爱数学的小明和同桌做了如图1所示正方体,并在正方体的内表面写上“祝你学习进步”六个字,玩起了猜字的游戏他们将表面适当剪开,得到如图2所示的表面展开图请回答下列问题:(1)“你”的对面是“ 习习”;(2)如果“祝”是左面,“你”在后面,那么“ 学学”在上面考点:专题:正方体相对两个面上的文字分析:(1)根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合图形解答(2)结合展开图可知“祝”和“步”相对,“你”和“习”相对,“学”和“进”相对,再根据已知“祝”是左面,“你”在后面,进行判断即可解答:解:(1)“你”的对面是“习“(2)根据题意可知,“步”在右面,“习”在前面,从而“进”在下面,“学”在上面点评:本题考查灵活运用正方体的相对面解答问题,立意新颖,是一道不错的题8. 有一个骰子,它的三种放法如图所示,则这三种放法的底面上的点数之和是 1414考点:专题:正方体相对两个面上的文字专题:应用题分析:根据正方体的特征知,相邻的面一定不是对面,所以面“1”与面“6”相对,面“4”与面“5”相对,“2”与面“3”相对据此求解解答:解:由题意得面“1”与面“6”相对,面“4”与面“5”相对,“2”与面“3”相对所以这三种放法的底面上的点数分别是3,5,6,其和是14点评:注意正方体的空间图形,从相对面入手,分析及解答问题四截一几何体1. )将圆柱沿斜方向切去一截,剩下的一段如图所示,将它的侧面沿一条母线剪开,则得到的侧面展开图的形状不可能是() ABCD考点:截一个几何体;几何体的展开图分析:结合题目中的图形,可知得到的侧面展开图的形状不可能是角的形状解答:解:结合题目中的图形,可知得到的侧面展开图的形状不可能是角的形状,故选C点评:解决此类问题一定要注意结合实际考虑正确的结果2. 如图所示的一块长方体木头,想象沿虚线所示位置截下去所得到的截面图形是()ABCD考点:截一个几何体分析:首先根据两组对边平行,可确定为平行四边形;又有一角为直角,故截面图形是矩形解答:解:长方体的截面,经过长方体四个侧面,长方体中,对边平行,故可确定为平行四边形,交点垂直于底边,故为矩形故选B点评:截面的形状既与被截的几何体有关,还与截面的角度和方向有关对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法3. 如图,一平面经过圆锥的顶点截圆锥所得到的截面形状是()ABCD考点:截一个几何体分析:经过圆锥顶点的平面与圆锥的侧面和底面截得的都是一条线,由图可知经过圆锥顶点的平面截圆锥所得的截面应该是个等腰三角形解答:解:经过圆锥顶点的平面与圆锥的侧面和底面截得的都是一条线,由图可知经过圆锥顶点的平面截圆锥所得的截面应该是个等腰三角形,故选B点评:本题考查几何体的截面,关键要理解面与面相交得到线4. 用一个平面去截一个正方体,则截面的形状不可能为()A四边形B七边形C六边形D三角形考点:截一个几何体分析:正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形解答:解:正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形因此不可能是七边形故选B点评:本题考查正方体的截面正方体有六个面,截面与其六个面相交最多得六边形,不可能是七边形或多于七边的图形5. 如图,是平切一个球体,截去一部分后得到的几何体,它的俯视图是()ABCD考点:截一个几何体;简单组合体的三视图专题:几何图形问题分析:平切一个球体,截去一部分后得到的几何体后,找到从上面看所得到的图形即可解答:解:从上面看可得到一个圆环的图形,里面的圆画实线故选A点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,注意看得到的棱画实线五三视图如图是一个正方体被截去一角后得到的几何体,它的俯视图是() ABCD考点:简单组合体的三视图;截一个几何体分析:根据俯视图是从上面看到的图形判定则可解答:解:从上面看,是正方形右边有一条斜线,故选:A点评:本题考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键2如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A向右平移2个单位,向后平移1个单位后,所得几何体的视图() A主视图改变,俯视图改变B主视图不变,俯视图不变C主视图不变,俯视图改变D主视图改变,俯视图不变考点:简单组合体的三视图分析:主视图是从正面观察得到的图形,俯视图是从上面观察得到的图形,结合图形即可作出判断解答:解:根据图形可得,图及图的主视图一样,俯视图不一样,即主视图不变,俯视图改变故选C点评:此题考查了简单组合体的三视图,掌握主视图及俯视图的观察方法是解答本题的关键,难度一般3. )如图是一个由4个相同的正方体组成的立体图形,它的三视图是()ABCD考点:简单组合体的三视图分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答:解:从正面看可得从左往右2列正方形的个数依次为1,2;从左面看可得到从左往右2列正方形的个数依次为2,1;从上面看可得从上到下2行正方形的个数依次为1,2,故选A4. 如图,是一个小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的上数,请你画出它从正面和从左面看得到的平面图形考点:简单组合体的三视图分析:由已知条件可知,主视图有3列,每列小正方数形数目分别为3,2,3,左视图有2列,每列小正方形数目分别为3,3据此可画出图形解答:解:点评:本题考查几何体的三视图画法由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字5. 如图,是由一些大小相同的小正方体组合成的简单几何体(1)图中有 99块小正方体;(2)请分别画出它的主视图、左视图和俯视图考点:作图-三视图分析:(1)找到所有正方体的个数,让它们相加即可;(2)主视图有4列,每列小正方形数目分别为2,2,1,1;左视图有2列,每列小正方形数目分别为2,2;俯视图有3列,每列小正方形数目分别为2,2,1,1解答:解:(1)23+3=9;(2)点评:本题考查了作三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形6. 用小立方块搭一个几何体,使得它的主视图和俯视图如图所示这样的几何体只有一种吗?它最少需要多少个小立方块?最多需要多少个小立方块? 考点:由三视图判断几何体专题:开放型分析:由几何体的主视图和俯视图可知,该几何体的主视图的第一列3个正方形中每个正方形所在位置最多均可有3个小立方块,最少一个正方形所在位置有3个小立方块,其余2个所在位置各有1个小立方块;主视图的第二列2个小正方形中,每个小正方形所在位置最多均可有2个小立方块,最少一个正方形所在位置有2个小立方块,另一个所在位置有1个小立方块;主视图的第三列1小正方形所在位置只能有1个小立方块解答:解:这样的几何体不止一种,而有多种摆法最多需要33+22+1=14(个)小立方块,最少需要3+2+2+1+1=9(个)小立方块点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查如果掌握口诀“俯视图打地基,正视图疯狂盖”就更容易得到答案世界观人人都有,而哲学只有经过系统的学习的人才能掌握它。世界观是自发成的,是不系统的、不自觉的、缺乏严密的逻辑和理论论证,而哲学则是把自发的、零散的、朴素的世界观加以理论化和系统化,因而具有严密的逻辑和完整的理论体系。appearance of the weld appearance quality technical requirements of the project must not have a molten metal stream does not melt the base metal to weld, weld seam and heat-affected zone surface must not have cracks, pores, defects such as crater and ash, surface smoothing, weld and base metal should be evenly smooth transition. Width 2-3 mm from the edge of weld Groove. Surface reinforcement should be less than or equal to 1 + 0.2 times the slope edge width, and should not be greater than 4 mm. Depth of undercut should be less than or equal to 0.5 mm, total length of the welds on both sides undercut not exceed 10% of the weld length, and long continuous should not be greater than 100 mm. Wrong side should be less than or at 0.2T, and should not be greater than 2 mm (wall thickness mm t) incomplete or not allow 7.5 7.5.1 installation quality process standards of the electrical enclosure Cabinet surface is clean, neat, no significant phenomenon of convex, close to nature, close the door. 7.5.2 Cabinet Cabinet face paints no paint
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年供应链行业智能供应链管理案例解析报告
- 2025年绿色食品市场需求与供应链管理研究报告
- 2025年汽车零部件行业智能网联汽车发展研究报告
- 2025年临床心理学病人心理评估模拟测试答案及解析
- 屏山县事业单位2025年下半年面向教育部直属师范大学2026届公费师范生和“国家优师计划”2026届毕业生公开考核招聘教师笔试备考题库及答案解析
- 2025河南周口鹿邑检察机关招聘54人笔试参考题库附答案解析
- 2025北京大学肿瘤医院云南医院云南省肿瘤医院昆明医科大学第三附属医院非事业编制工勤人员招聘9人笔试备考题库及答案解析
- 2025广东深圳市龙岗区第三人民医院第四批招聘聘员及劳务派遣人员15人笔试模拟试题及答案解析
- 2025年骨科创伤急救措施考核模拟考试试卷答案及解析
- 2025年安徽理工学校招聘医护人员2人笔试参考题库附答案解析
- 二十四节气农事活动
- 食物中毒的心理援助与危机干预
- 2022星闪无线短距通信技术(SparkLink 1.0)安全白皮书网络安全
- 卫生公共基础知识考试大纲
- 小学数学六年级上册第五单元课件
- 《电子凭证会计数据标准-全面数字化的电子发票(试行版)》指南
- 湖南土建中级职称考试复习总结
- 混合痔痔的护理查房
- 大学物理实验长测量
- 材料科学基础复习题及答案
- 药监系统官方培训06细菌内毒素方法介绍-蔡彤
评论
0/150
提交评论