经济统计学第8章_第1页
经济统计学第8章_第2页
经济统计学第8章_第3页
经济统计学第8章_第4页
经济统计学第8章_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.,第八章相关与回归分析,.,一、相关关系,社会经济现象普遍存在两种变量关系:(一)函数关系Yf(x)称为函数关系。它反映着现象之间存在着严格的依存关系,也就是具有确定性的对应关系,这种关系可用一个数学表达式反映出来。,.,(二)相关关系相关关系是客观存在的非确定性的数量对应关系。Yf(x);被称为随机(因素)扰动项,或残差。,它反映着现象之间的数量上不严格的依存关系,也就是说两者之间不具有确定性的对应关系,这种关系有二个明显特点:,1.相关关系是现象之间确实存在数量上的依存关系,即某一社会经济现象变化要引起另一社会经济现象的变化;,2.现象之间的这种依存关系是不严格的,即无法用数学公式表示。,.,相关与回归分析,.,二、相关关系的种类,(一)按相关变量的多少划分单相关、复相关(二)按数学方程性质(形态)划分直线相关:两个变量之间的变动关系在散点图上呈直线趋势,可以用直线模型来表示。ya0a1X1apXp曲线相关:两个变量之间的变动关系在散点图上呈曲线趋势,可以用曲线模型来表示。,.,(三)按变动方向划分1、正相关:两种变量的相对应数值同时扩大或缩小,其变动方向一致。2、负相关:两种变量相对应的数值,此增彼减,变动方向相反。(四)按相关的程度划分完全相关不完全相关无相关,.,相关关系的判定,一、相关表二、相关图三、相关系数,.,.,三、直线相关关系的测定,(一)、相关系数基本公式:,.,(二)相关系数简捷计算方法,.,(二)相关系数的使用:,1、取值范围:|r|1,r0,正相关。2、密切程度判断:|r|0,不相关(或非直线相关);|r|1完全相关。|r|0.3,弱相关;0.3|r|0.5,低相关;0.5|r|0.8,显著相关;0.8|r|1,高度相关。,.,.,简单线性相关分析的特点,通过对r的计算方法的讨论,可看出二个明显特点:,2.相关关系中只能计算出一个相关系数r。,1.相关关系中,两个变量不必定出哪个是自变量,哪个是因变量,因此,相关的两个变量都是随机变量;,.,四、一元直线回归分析,(一)、回归分析的涵义和特点英国人口学家Galton首先提出了回归的概念,即一定身高的父母所生的子女的平均身高,有着朝整个总体平均身高移动(或回归)的倾向,即回归到中等水平。,.,现代回归的涵义:研究一个应变量(因变量,被解释变量)对一个或多个其它变量(自变量,解释变量)的依存关系,其目的在于根据已知的解释变量之值来估计和预测因变量的总体均值。即已知父亲身高的条件下,儿子们平均身高是怎样变动的。,.,家庭收入x和家庭消费支出y的关系,支出,收入,300,400,500,600700,260,300,350,400,.,相关与回归分析,相关分析是回归分析的基础和前提。回归分析是相关分析的深入和继续。,.,1.相关分析中两个变量是对等关系,回归分析中两个变量必须根据研究目的,确定自变量和因变量;2.相关分析只能反映变量间的相关密切程度,回归分析可以计算出X、Y的具体相关数值。,.,(二)、参数的最小二乘估计,高斯证明了在某些假定的条件下,利用样本的变量数据,用最小二乘法(要求实际值与趋势值的离差的平方为最小)得到的总体回归参数的估计量是最优的。,总体一元线性模型,样本一元线性模型,.,最小二乘法,用最小二乘法得到的a、b称为、的最小二乘估计,他们所确定的直线称为Y对X的线性回归方程。求a、b的方法(原理):,.,.,基本假设,1)变量X,Y之间存在“真实的”线性关系。2)变量X为非随机变量。3)随机项i(i=1,2.n),服从N(0,2)分布,(即给定X条件下的平均数为0,且对于每一个给定Xi,i的条件方差是某个等于2的正常数)且相互之间独立。,.,条件3就是要求给定X条件下,变量Y同分布,且不相互依赖。,支出,收入,回归直线,300,400,500,600,.,某地区10个商业企业的客流量和销售额之间的资料统计如下:,.,计算相关系数r=0.9918,.,利用最小二乘法求解参数a,b得到销售额对客流量的直线回归方程Y=4.081+4.1544X,.,估计标准误差就是用来说明回归方程推算结果的准确程度的统计分析指标。以绝对值表示,其数值越小,说明推算结果的准确程度越高,回归直线的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论