已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
整式的乘法与因式分解和知识清单1.同底数幂的乘法:同底数幂相乘,底数不变,指数相加。和amanamn (m、n为正整数)2.幂的乘方:幂的乘方,底数不变,指数相乘。 amn (m、n为正整数) 3.积的乘方:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。 (n为正整数)练习: (1) (2) (3)(4) (5) (6)4 amn (a0,m、n都是正整数,且mn)同底数幂相除,底数不变,指数相减例:(1)x8x2 (2)a4a (3)(ab)5(ab)2(4)(-a)7(-a)5 (5) (-b) 5(-b)25零指数幂的概念:a01 (a0)任何一个不等于零的数的零指数幂都等于l例:若成立,则满足什么条件?6负指数幂的概念:ap (a0,p是正整数)任何一个不等于零的数的p(p是正整数)指数幂,等于这个数的p指数幂的倒数也可表示为:(m0,n0,p为正整数)7单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式例:(1) (2)8单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加例:(1) (2)(3) (4)9多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加例:(1) (2) (3)练习:1计算2x 3(2xy)(xy) 3的结果是 2(310 8)(410 4) 3若n为正整数,且x 2n3,则(3x 3n) 2的值为 4如果(a nbab m) 3a 9b 15,那么mn的值是 5a 2(2a 3a) 6(4x 26x8)(x 2) 72n(13mn 2) 8若k(2k5)2k(1k)32,则k9(3x 2)(2x3y)(2x5y)3y(4x5y) 10在(ax 2bx3)(x 2x8)的结果中不含x 3和x项,则a,b 11一个长方体的长为(a4)cm,宽为(a3)cm,高为(a5)cm,则它的表面积为,体积为。12一个长方形的长是10cm,宽比长少6cm,则它的面积是,若将长方形的长和都扩大了2cm,则面积增大了。10单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式例:(1)28x4y27x3y(2)-5a5b3c15a4b(3)(2x2y)3(-7xy2)14x4y311多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加 例:练习:1计算:(1);(2);(3) (4)(5)2计算:(1);(2)(3)3计算:(1);(2)4.若 (ax3my12)(3x3y2n)=4x6y8 , 则 a = , m = ,= ;12乘法公式:平方差公式:(ab)(ab)a2b2完全平方公式:(ab)2a22abb2 (ab)2a22abb2例1: (1)(7+6x)(76x); (2)(3y x)(x3y); (3)(m2n)(m2n)例2: (1) (x+6)2 (2) (y-5)2 (3) (-2x+5)2 练习:1、=_。_。2、(_)3、;(_)4、已知,那么=_;=_。5、若是一个完全平方式,那么m的值是_。6、多项式的公因式是_。7、因式分解:_。8、因式分解:_。9、计算:_。10、,则=_13因式分解(难点)因式分解的定义把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解 掌握其定义应注意以下几点: (1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形; (3)因式分解必须分解到每个因式都不能分解为止弄清因式分解与整式乘法的内在的关系因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式二、熟练掌握因式分解的常用方法1、提公因式法例:(1) (2)2、公式法运用公式法分解因式的实质是把整式中的乘法公式反过来使用;常用的公式:平方差公式: a2b2 (ab)(ab)完全平方公式:a22abb2(ab)2 a22abb2(ab)2例:(1)(2)(3)(4)练习:1、若是完全平方式,则的值等于_。2、则=_=_3、与的公因式是4、若=,则m=_,n=_。5、在多项式中,可以用平方差公式分解因式的有_ ,其
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学开设公务员考试课目试题及答案
- 崇左市扶绥县公务员考试试题及答案
- 生态旅游基础设施建设项目施工方案
- 供热站调度与管理方案
- 大豆加工自动化与智能化系统方案
- 县城排水防涝能力提升项目实施方案
- 2025甘肃环县自来水公司招聘80人易考易错模拟试题(共500题)试卷后附参考答案
- 生物降解塑料袋在电子产品包装中的应用探讨
- 2025浙江海港国际联运限公司招聘3人易考易错模拟试题(共500题)试卷后附参考答案
- 2025河南中烟许昌卷烟厂招聘10人易考易错模拟试题(共500题)试卷后附参考答案
- 2025年海洋知识竞赛题库及答案
- 2024年中考历史试题分类汇编:世界近代史(原卷版+解析)
- 2024年研学旅游洞察研究报告-中国旅游协会
- 物业代收水费协议书
- 新发展英语(第二版)综合教程2 课件 Unit 12 On the Way
- BRCGS全球标准食品安全第9版内部审核和管理评审全套记录
- 有限空间作业应急预案
- 2025-2030中国碳酸二甲酯(DMC)行业发展趋势与前景展望战略研究报告
- T-SAEG 004-2024 汽车安全气囊系统标定要求及试验方法
- 武汉市江岸区2024年九年级上学期《道德》期中试题与参考答案
- 楼梯扶手简易施工合同
评论
0/150
提交评论