




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
遥感图像的几何校正(配准)1.实验目的与任务:(1)了解几何校正的原理;(2)学习使用ENVI软件进行几何校正;2.实验设备与数据:设备:遥感图像处理系统ENVI数据:TM数据 3 几何校正的过程:注意:几何校正一种是影像对影像,一种是影像对地图,下面介绍的是影像对影像的配准或几何校正。1.打开参考影像(base)和待校正影像:分别打开,即在display#1,display#2中打开;2在主菜单上选择map-Registration-select GCPs:image to image3.出现窗口Image to Image Registration,分别在两边选中DISPLAY 1(左),和DISPLAY 2(右)。 BASE图像指参考图像而warp则指待校正影像。 选择OK!4.现在就可以加点了:将两边的影像十字线焦点对准到自己认为是同一地物的地方,就可以选择ADD POINT添加点了。(PS:看不清出别忘记放大) 如果要放弃该点选择右下脚的delete last point,或者点show point弹出image to image gcp list窗口,从中选择你要删除的点,也可以进行其他很多操作,自己慢慢研究,呵呵。选好4个点后就可以预测:把十字叉放在参考影像某个地物,点选predict则待校正影像就会自动跳转到与参考影像相对应的位置,而后再进行适当的调整并选点。5.选点结束后,首先把点保存了 :ground control points-file-save gcp as ASCII.当然你没有选完点也可以保存,下次就直接启用就可以:ground control points-file-restore gcps from ASCII.6.接下来就是进行校正了:在ground control points.对话框中选择:options-warp file(as image to map)在出现的imput warp image中选中你要校正的影像,点ok进入registration parameters对话框:首先点change proj按钮,选择坐标系然后更改象素的大小,如果本身就是你所需要大小则不用改了最后选择重采样方法(resampling),一般都是选择双线性的(bilinear),最后的最后选择保存路径就OK了遥感图像的监督分类1 实验的目的和任务1)理解遥感图像计算机分类的原理和方法;2) 掌握监督分类的步骤和方法。2.实验设备与数据: 设备:遥感图像处理系统ENVI数据:ENVI自带的数据 3 实验内容:遥感图像监督分类。监督分类(Supervised Classification)用于在数据集中根据用户定义的训练样本类别(Training Classes)聚类像元。训练样本类别是像元的集合或者单一波谱,通常的训练区采用ROI来选择,而且应该尽可能的选择纯净的感兴趣区域。 具体的操作参考以下图和步骤: 1)、类别定义/特征判别 根据分类目的、影像数据自身的特征和分类区收集的信息确定分类系统;对影像进行特征判断,评价图像质量,决定是否需要进行影像增强等预处理。这个过程主要是一个目视查看的过程,为后面样本的选择打下基础。本例是以ENVI自带Landsat tm5数据Can_tmr.img为数据源,类别分为:林地、草地/灌木、耕地、裸地、沙地、其他六类。2)、样本选择 为了建立分类函数,需要对每一类别选取一定数目的样本,在ENVI中是通过感兴趣区(ROIs)来确定,也可以将矢量文件转化为ROIs文件来获得,或者利用终端像元收集器(Endmember Collection)获得。本例中使用ROIs方法,打开分类图像,在Display-Overlay-Region of Interest,默认ROIs为多边形,按照默认设置在影像上定义训练样本。如图18所示,设置好颜色和类别名称(支持中文名称)。在ROIs面板中,选择Option-Compute ROI Separability,计算样本的可分离性。如图19所示,表示各个样本类型之间的可分离性,用Jeffries-Matusita, Transformed Divergence参数表示,这两个参数的值在02.0之间,大于1.9说明样本之间可分离性好,属于合格样本;小于1.8,需要重新选择样本;小于1,考虑将两类样本合成一类样本。训练样本的选择样本可分离性计算报表3)、分类器选择 根据分类的复杂度、精度需求等确定哪一种分类器。目前监督分类可分为基于传统统计分析学的,包括平行六面体、最小距离、马氏距离、最大似然,基于神经网络的,基于模式识别,包括支持向量机、模糊分类等,针对高光谱有波谱角(SAM),光谱信息散度,二进制编码。4)、影像分类 基于传统统计分析的分类方法参数设置比较简单,这里选择支持向量机分类方法。主菜单下选择Classification Supervised Support Vector Machine。按照默认设置参数输出分类结果,如图21所示。支持向量机分类器参数设置支持向量机分类结果5)、分类后处理 分类后处理包括的很多的过程,都是些可选项,包括更改类别颜色、分类统计分析、小斑点处理(类后处理)、栅矢转换等操作。(1)更改类别颜色 可以在Interactive Class Tool面板中,选择Option-Edit class colors/names更改,也可以在Display-Color Mapping-Class Color Mapping。如下图所示,直接可以在对应的类别中修改颜色。 也可以根据一个显示的RGB影像来自动分配类别颜色,打开主菜单-Classification-Post Classification-Assign Class Colors。类别颜色的更改类别颜色更改后的效果自动颜色更改的效果图(2)分类统计分析 主菜单-Classification-Post Classification-Class Statistics。如图11所示,包括基本统计:类别的像元数、最大最小值、平均值等,直方图,协方差等信息。分类结果统计(3)小斑点处理(类后处理) 运用遥感影像分类结果中,不可避免地会产生一些面积很小的图斑。无论从专题制图的角度,还是从实际应用的角度,都有必要对这些小图斑进行剔除和重新分类,目前常用的方法有Majority/Minority分析、聚类(clump)和过滤(Sieve)。这些工具都可以在主菜单-Classification-Post Classification中找到。Majority/Minority分析和聚类(clump)是将周围的“小斑点”合并到大类当中,过滤(Sieve)是将不符合的“小斑点”直接剔除。 如下图为Majority分析的结果。类后处理结果图4)栅矢转换 打开主菜单-Classific
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度办公家具采购与安装一体化合同
- 二零二五年度大型数据中心EPC总承包合同协议
- 二零二五版保安职业技能培训服务合同
- 二零二五年度矿产资源采矿权出让专项合同范本
- 二零二五年度船舶保险合同范本
- 2025版网络安全项目策划与防护委托合同
- 二零二五年智能泵车租赁合作协议汇编
- 二零二五版厂房租赁合同标准:厂房租赁合同违约责任条款
- 二零二五年度商业地产租赁合同
- 二零二五年度物流运输软件销售与优化方案合同
- 建筑公司挂靠合同书
- 2025年医疗器械管理培训考试试卷及答案
- 机关反食品浪费活动方案
- 酒店消防安全管理制度完整
- 博洛尼精装修人群细分调研计划书
- 2020新版个人征信报告模板
- 200个句子涵盖了高中英语3500词汇诵读加记忆
- 皮肤、斑的认识PPT课件
- 外研版九年级上册英语课文原文与翻译
- 环形混凝土电杆检验报告Yφ19012米G级
- 筛机的主要部件设计和计算
评论
0/150
提交评论