



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题:复数的几何意义学校 姓名 一、教学目标:(1)能够类比实数的几何意义说出复数几何意义(2)会利用几何意义求复数的模;(3)能够说出共轭复数的概念二、教学重点、难点:重点:复数的几何意义以及复数的模难点:复数的几何意义及模的综合应用三、教学方法:本节主要让学生类比实数的几何意义和实数的绝对值的几何意义,探究出复数的几何意义和复数的模公式。四、教学过程:(一)课题引入实数的几何意义1.提问:在几何上,我们用什么来表示实数? 实数可以用数轴上的点来表示实数 数轴上的点 (数) (形)(二)新知探究探究一:复数的几何意义思考1: 实数与数轴上的点的对应关系是什么?类比实数的表示,是否也存在一个点与之对应?若存在,这个点的形式是什么?问:你能找出复数与有序实数对、 坐标点的对应关系吗?(教师提出问题,学生思考,进行小组讨论)。通过类比,找出复数与有序实数对、坐标点的一一对应关系。从而找到复数的几何意义。思考2:平面向量的坐标为 ,由此你能得出复数的另一个几何意义吗?通过思考2,让学生能够把复数和位置向量相结合,从而推导复数的另一个几何意义。复数集C和复平面内所有的点所成的集合是一一对应关系,即复数 复平面内的点 平面向量 (数) (形)建立了平面直角坐标系来表示 -复数平面 (简称复平面) x轴-实轴 y轴-虚轴小结:复数的几何意义:1复数与复平面内的点是一一对应的2复数与复平面内向量一一对应的复平面的有关概念介绍1复平面2实轴 表示实数3虚轴 除原点外都是纯虚数探究二:复数的模思考:实数绝对值的几何意义?通过类比,你能说出复数的模几何意义吗?复数z=a+bi(a,bR)的模:|z|= 共轭复数: (三)典型例题例1辨析下列命题中的假命题是( )(A)在复平面内,对应于实数的点都在实轴上;(B)在复平面内,对应于纯虚数的点都在虚轴上;(C)在复平面内,实轴上的点所对应的复数都是实数;(D)在复平面内,虚轴上的点所对应的复数都是纯虚数。变式(或跟踪)训练1“a=0”是“复数a+bi (a , bR)是纯虚数”的( )。 (A)必要不充分条件 (B)充分不必要条件 (C)充要条件 (D)不充分不必要条件2“a=0”是“复数a+bi (a , bR)所对应的点在虚轴上”的( )。 (A)必要不充分条件 (B)充分不必要条件 (C)充要条件 (D)不充分不必要条件例2已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围方法总结:表示复数的点所在象限的问题 转化 复数的实部与虚部所满足的不等式组的问题 ( 几何问题) (代数问题)一种重要的数学思想:数形结合思想变式(或跟踪)训练:1、已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点在直线x-2y+4=0上,求实数m的值。解:复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点是(m2+m-6,m2+m-2),(m2+m-6)-2(m2+m-2)+4=0m=1或m=-2。2:证明对一切m,此复数所对应的点不可能位于第四象限。(四)拓展提升探究三、复数的模 的几何意义:对应平面向量 的模| Z|,即复数 z=a+bi在复平面上对应的点Z(a,b)到原点的距离。(五)归纳小结 1、复数几何意义 2、复数模的几何意义 3、数学思想方法:类比、数形结合五、作业布置1.书面作业: 2.探究性作业:思考:(1)满足|z|=5(zR)的z值有几个?(2)满足|z|=5(zC)的z值有几个?这些复数对应的点在复平面上构成怎样的图形? 六、教学反思七、超级链接1、在复平面内,分别用点和向量表示下列复数:4,3+i,-1+4i,-3-2i,-i2、已知复数=3-4i,=,试比较它们模的大小3、若复数Z=4a+3ai(a0),则其模长为4满足|z|=1(zR)的z值有几个?满足|z|=1(zC)的z值有几个?这些复数对应的点在复平面内构成怎样的图形?其轨迹方程是什么?5、 复数z1=1+2i,z2=2+i,z3=12i
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 一棵开花的树1500字12篇
- 杭州宋城游记650字9篇
- 小王子读后感900字(9篇)
- 早期育儿知识培训方案课件
- 纪检业务知识培训目的课件
- 统编版语文四年级上册《语文园地八》课件
- 早期埃及课件
- 农村资源开发综合利用合同书
- 农村环保技术应用合作合同书
- 六年级观后感八佰观后感十五550字12篇
- 酒吧入股合同协议
- 公司合同协议变更
- 2025届吉林市高三第三次模拟考试生物试卷(原卷版+解析版)
- 反恐安全风险评估记录
- 【图文】个人简历模板大全-可直接下载使用
- DB42∕T 1049-2015 房产测绘技术规程
- 2025年美术作品授权合同协议
- 支持青少年身心健康的家庭指南 资讯、建议和资源 -促进中小学学生(K-12)家庭的心理健康意识和身心健康
- 加气站气瓶充装质量保证体系手册2024版
- 构建学校与家庭共育的信息化平台研究
- 2025年下派挂职干部工作总结范例(三篇)
评论
0/150
提交评论