




已阅读5页,还剩38页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
RandomFiniteSetsinStochasticFiltering,Ba-NguVoEEEDepartmentUniversityofMelbourneAustralia,.au/staff/bv/,IEEEVictorianChapterJuly28,2009,StochasticFilteringHistory,1940s:WienerfilterPioneeringworkbyWiener,Kolmogorov,1950s:KalmanfilterWorkbyBodemk-1,Pk-1),N(.;mk|k-1,Pk|k-1),N(.;mk,Pk),Kalmanfilter,7,学习交流PPT,state-vector,statedynamic,statespace,observationspace,xk,xk-1,zk-1,zk,PracticalChallenges,fk|k-1(xk|xk-1),gk(zk|xk),Sofar,weassumedexactly1observationateachtimeHoldsonlyforasmallnumberofapplicationsPracticalmeasuringdevice:mayfailtodetecttrueobservation(detectionuncertainty),E,Example2:multi-BernoulliRFS=,UnionofBernoulliRFSs,17,学习交流PPT,RandomFiniteSet,E,SamplenPoiss(r),fori=1:n,samplexip(.),end;,Example3:PoissonRFS,E,Samplenc(.),fori=1:n,samplexip(.),end;,Example4:i.i.d.clusterRFS,18,学习交流PPT,RandomFiniteSet,Needsuitablenotionsofdensity/integrationforfiniteset,pk-1(Xk-1|Z1:k-1),pk(Xk|Z1:k),pk|k-1(Xk|Z1:k-1),prediction,data-update,?,?,states,multi-objectstate,multi-objectobservation,X,observations,X,Z,Multi-objectBayesfilter,19,学习交流PPT,RandomFiniteSet,Belief“density”ofSfS:F(E)0,)bS(T)=TfS(X)dX,Belief“distribution”ofSbS(T)=P(ST),TE,E,S,ProbabilitydensityofSpS:F(E)0,)PS(T)=TpS(X)m(dX),ProbabilitydistributionofSPS(T)=P(ST),TF(E),F(E),S,CollectionoffinitesubsetsofE,Statespace,MahlersFiniteSetStatistics(1994),Choquet(1968),T,T,Conventionalintegral,Setintegral,PointProcessTheory(1950-1960s),VSD(2005),20,学习交流PPT,Computationallyexpensive!,single-objectBayesfilter,multi-objectBayesfilter,stateofsystem:randomvector,first-momentfilter(e.g.a-b-gfilter),stateofsystem:randomset,first-momentfilter(“PHD”filter),Single-object,Multi-object,ThePHDFilter,pk-1(Xk-1|Z1:k-1),pk(Xk|Z1:k),pk|k-1(Xk|Z1:k-1),prediction,data-update,Multi-objectBayesfilter,21,学习交流PPT,ThePHDFilter,x0,statespace,vPHD(intensityfunction)ofanRFS,S,v(x)dx=expectednumberofobjectsinS,S,v(x0)=densityofexpectednumberofobjectsatx0,22,学习交流PPT,ThePHDFilter,statespace,vk,vk-1,PHDfilterMahler03,vk-1(xk-1|Z1:k-1),vk(xk|Z1:k),vk|k-1(xk|Z1:k-1),PHDprediction,PHDupdate,Multi-objectBayesfilter,pk-1(Xk-1|Z1:k-1),pk(Xk|Z1:k),pk|k-1(Xk|Z1:k-1),prediction,update,Avoidsdataassociation!,ThePHDFilter:Prediction,vk|k-1(xk|Z1:k-1)=fk|k-1(xk,xk-1)vk-1(xk-1|Z1:k-1)dxk-1+gk(xk),fk|k-1(xk,xk-1)=ek|k-1(xk-1)fk|k-1(xk|xk-1)+bk|k-1(xk|xk-1),probabilityofobjectsurvival,termforobjectsspawnedbyexistingobjects,Markovtransitiondensity,24,学习交流PPT,ThePHDFilter:Update,vk(xk|Z1:k),S,zZk,Dk(z)+kk(z),pD,k(xk)gk(z|xk),+1-pD,k(xk)vk|k-1(xk|Z1:k-1),Dk(z)=pD,k(x)gk(z|x)vk|k-1(x|Z1:k-1)dx,Nk=vk(x|Z1:k)dx,Bayes-updatedintensity,predictedintensity(fromprevioustime),intensityoffalsealarms,sensorlikelihoodfunction,probabilityofdetection,expectednumberofobjects,measurement,25,学习交流PPT,ThePHDFilter,GaussianMixturePHDFilterVM05,06,ParticlePHDFilterVSD03,05,Mahler&Zajic03,Sidenbladh03,wk-1,xk-1,j=1,Jk-1,(j),(j),j=1,Jk|k-1,(j),(j),wk|k-1,xk|k-1,wk,xk,j=1,Jk,(j),(j),wk-1,mk-1,Pk-1,j=1,Jk-1,(j),(j),(j),wk|k-1,mk|k-1,Pk|k-1,j=1,Jk|k-1,(j),(j),(j),wk,mk,Pk,j=1,Jk,(j),(j),(j),26,学习交流PPT,ThePHDfilter,Extended&UnscentedKalmanPHDfilterVM06JumpMarkovPHDfilterPashaet.al.06TrackcontinuityClarket.al.06ConvergenceClarket.al.07BritishPetrolium(Pipelinetracking)07VisualtrackingPhamet.al.07CelltrackingJuanget.al.09,BistaticradarTobias&Lanterman05TracklabellingtrackassociationPantaet.al.07,Linet.al06ConvergenceVDS05,Johansenetal07,Clark&Bell06,ComputervisionMaggioet.al.07,Wanget.al.2008,AuxiliaryparticlePHDfilterWhitleyet.al.07TrafficintensityestimationBattistelliet.al.08,Particle-PHDfilterVSD03,05,GM-PHDfilterVM05,06,27,学习交流PPT,ThePHDfilter,Videodata:trackingfootballplayersPhametal.07,DatacourtesyofCzyzet.al.,28,学习交流PPT,ThePHDfilter,Videotrackingofpeoplewalking(340frames)Phametal.07,DatacourtesyofK.SmithIDIAPResearchInstitute.,29,学习交流PPT,TheCardinalisedPHDFilter,DrawbackofPHDfilter:Highvarianceofcardinalityestimate,RelaxPoissonassumption:allowsanycardinalitydistribution,Jointlypropagate:intensityfunction&cardinalitydistribution.,HighercomputationalcostthanPHDStillcheaperthanstate-of-the-arttraditionaltechniques,CPHDfilterMahler06,07,GaussianMixtureCPHDfilterVVC06,07,30,学习交流PPT,GMTIRadarUlmkeet.al.07TestedbyFGAN(NATOBoldAvengerexercise)07,AcousticsourcetrackingPhamet.al.08TestedonMSTWGandSEABARDatasetsErdincet.al.08ComparisonwithMHTSvenssonetal.09ConvoytrackingPollardet.al.09TrackingfromaerialimagePollardet.al.09LockheedMartin(SpaceFence)09.,GM-CPHDfilterVVC05,06,TheCardinalisedPHDFilter,31,学习交流PPT,Sonarimages,TheCardinalisedPHDFilter,32,学习交流PPT,Largescalemultipletargettrackingwithsmallfalsealarmrate,CourtesyofLockheedMartin,TheCardinalisedPHDFilter,33,学习交流PPT,Upto1500closelyspacedtargetsonastandardlaptop!,CourtesyofLockheedMartin,OSPAdistance(satisfiesallmetricaxioms)=pertargetcardinality&stateerror,TheCardinalisedPHDFilter,34,学习交流PPT,SLAM(SimultaneousLocalisationandMapping),Objective:Jointlyestimaterobotpose&map(setoflandmarks),ThePHDFilterinSLAM,35,学习交流PPT,ThePHDFilterinSLAM,Robotpose,Map,Measurements,Controls,Measurementlikelihood,Setintegral,Transitiondensity,RFS-SLAMprediction,RFS-SLAMupdate,(Feature)Map=finitesetoflandmarksBayesianSLAMrequiresmodellingthemapbyanRFS,Setintegral,RFS-SLAMMullaneet.al.08,36,学习交流PPT,Mapping:specialcaseofSLAMwithknownrobotposes,PHDapproximation:propagate1stmomentofthemapRFS,PHDoftheposteriormapRFS,ThePHDFilterinSLAM,37,学习交流PPT,Mapping:specialcaseofSLAMwithknownrobotposes,ThePHDFilterinSLAM,38,学习交流PPT,Experiment:NanyangTechnologicalUniversityCampus,PHDSLAM(approximationofRFS-SLAMrecursion):AugmentlandmarkswiththevehicleposeRepresentsetofaugmentedlandmarksasamarkedpointprocessPropagatePHDofthemarkedpointprocess,ThePHDFilterinSLAM,39,学习交流PPT,Lowclutter:All3algorithmscanclosetheloop,Higherclutter:OnlyPHD-SLAMcanclosetheloop,Groundtruthplottedingreen,ThePHDFilterinSLAM,40,学习交流PPT,ConcludingRemarks,ThankYou!,RandomFiniteSetFilteringBorneoutofpractical&fundamentalnecessitySignificanttheoreticalextensionofclassicalfilteringYieldsefficientalgorithmssuchasthePHDfiltersBeyondthePHDfiltersMulti-Bernoulli,Gauss-PoissonfiltersFilteringwithimagedataRobustnessStochasticcontrol,Formoreinfopleasesee.auSeealso:.au/staff/bv/publications.html,41,学习交流PPT,SomeReferences,BooksD.DaleyandD.Vere-Jones,AnIntroductiontotheTheoryofPointProcesses,Springer-Verlag,1988.D.Stoyan,D.Kendall,J.Mecke,StochasticGeometryanditsApplications,JohnWiley&Sons,1995I.Goodman,R.Mahler,andH.Nguyen,MathematicsofDataFusion.KluwerAcademicPublishers,1997.R.Mahler,StatisticalMultisource-MultitargetInformationFusion,ArtechHouse,2007.M.Mallick,V.Krisnamurthy,B.-N.Vo(eds),AdvancedTopicsandApplicationsinIntegratedTracking,Classification,andSensorManagement,IEEE-Wiley(underreview)PapersR.Mahler,“Multi-targetBayesfilteringviafirst-ordermulti-targetmoments,”IEEETrans.AES,vol.39,no.4,pp.11521178,2003.B.-N.Vo,S.Singh,andA.Doucet,“SequentialMonteCarlomethodsformulti-targetfilteringwithrandomfinitesets,”IEEETrans.AES,vol.41,no.4,pp.12241245,2005.B.-N.Vo,andW.K.Ma,“TheGaussianmixturePHDfilter,”IEEETrans.SignalProcessing,IEEETrans.SignalProcessing,Vol.54,No.11,pp.4091-4104,2006.R.Mahler,“PHDfilterofhigherorderintargetnumber,”IEEETrans.Aerospace&ElectronicSystems,vol.43,no.4,pp.15231543,2007B.T.Vo,B.-N.Vo,andA.Cantoni,AnalyticimplementationsoftheCardinalizedProbabilityHypothesisDensityFilter,IEEETrans.SignalProcessing,Vol.55,No.7,Part2,pp.3553-3567,2007.B.-T.Vo
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 垃圾炉排炉技改工程规划设计方案(参考模板)
- 推动中医药信息化建设与智能化服务应用
- 企业合作与工程教育模式创新的协同路径
- 农村林权流转经营开发合作协议
- 物流行业供应链优化成果展示表
- 《化学与生活:生活中的化学知识学习教案》
- 2025年心理健康与家庭教育相关知识考试试题及答案
- 2025年教育心理学基础考试试题及答案
- 2025年电子商务法律与法规考试试卷及答案
- 物资到货验收管理制度
- 2025年医保政策考试题库:基础理论及实际操作试题集
- 记账实操-天然气公司的全盘会计账务处理实例
- 2025国家开放大学《人类发展与环境保护》形成性考核123答案+终结性考试答
- 合理化建议培训
- 【8地 会考】2022-2024年安徽省初中(八年级)中考初二会考地理试卷(3年真题)
- 智慧农业系统创业计划书
- 小学入学备案合同协议
- 小区物业管理计划书:范文
- 户外广告安全
- 血透工程师试题及答案
- 房屋拆除协议书范本
评论
0/150
提交评论