



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2章 一维随机变量及其分布一、选择题1设F(x) 是随机变量X的分布函数,则下列结论不正确的是(A)若F(a)=0,则对任意xa有F(x)=0(B)若F(a)=1,则对任意xa有F(x)=1(C)若F(a)=1/2,则 P(xa)=1/2(D)若F(a)=1/2,则 P(xa)=1/22设随机变量X的概率密度f(x) 是偶函数,分布函数为F(x),则(A)F(x) 是偶函数 (B)F(x)是奇函数 (C)F(x)+F(-x)=1 (D)2F(x)-F(-x)=13设随机变量X1, X2的分布函数、概率密度分别为F1 (x)、F2 (x),f1 (x)、f2 (x),若a0, b0, c0,则下列结论中不正确的是(A)aF1 (x)+bF2 (x) 是某一随机变量分布函数的充要条件是a+b=1(B)cF1 (x) F2 (x) 是某一随机变量分布函数的充要条件是c=1(C)af1 (x)+bf2 (x) 是某一随机变量概率密度的充要条件是a+b=1(D)cf1 (x) f2 (x) 是某一随机变量分布函数的充要条件是c=14设随机变量X1, X2是任意两个独立的连续型随机变量,它们的概率密度分别为f1 (x)和f2 (x),分布函数分别为F1 (x)和F2 (x),则(A)f1 (x) +f2 (x) 必为某一随机变量的概率密度(B)f1 (x) f2 (x) 必为某一随机变量的概率密度(C)F1 (x)+F2 (x) 必为某一随机变量的分布函数(D)F1 (x)F2 (x) 必为某一随机变量的分布函数5设随机变量X服从正态分布,Y服从正态分布,且,则必有(A) (B) (C) (D)6设随机变量X服从正态分布,则随的增大,概率!值恒为0.68(A)单调增大 (B)单调减小 (C)保持不变 (D)增减不定7设随机变量X1, X2的分布函数分别为F1 (x)、F2 (x),为使aF1 (x)bF2 (x) 是某一随机变量分布函数,在下列给定的各组数值中应取(A) (B) (C) (D)8设f(x) 是连续型随机变量X的概率密度,则f(x) 一定是(A)可积函数 (B)单调函数 (C)连续函数 (D)可导函数9下列陈述正确的命题是(A)若则(B)若Xb(n, p), 则P(X=k)=P(X=n-k), k=0,1,2,n(C)若X服从正态分布,则F(x)=1-F(-x) (D)10假设随机变量X服从指数分布,则随机变量Y=minX,2的分布函数(A)是连续函数 (B)至少有两个间断点(C)是阶梯函数 (D)恰好有一个间断点二、填空题1一实习生用同一台机器连接独立的制造了3个同种零件,第个零件不合格不合格!的概率为,以表示3个零件中合格品的个数,则2设随机变量的概率密度函数为以表示对的三次重复观察中事件出现的次数,则3设连续型随机变量的分布密度为,则,的分布函数为4设随机变量的分布函数 则a = ,b = ,c = 。5设随机变量服从于参数为的二项分布,随机变量服从于参数为的二项分布,若,则6设随机变量X和Y同分布,X的概率密度为 已知事件A=Xa和B=Ya独立,且,则a = 。7设随机变量X的概率密度为 则= 。8设随机变量X的概率密度为 若k使得,则k的取值范围是 。9设X服从正态分布,且二次方程无实根的概率为1/2,则= 。参 考 答 案一、选择题1D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025自考专业(会计)综合提升测试卷(轻巧夺冠)附答案详解
- 自考专业(工商企业管理)高频难、易错点题往年题考附答案详解
- 应急处置安全培训课件
- 车辆转让合同(标准版)
- 船员劳动派遣合同(标准版)
- 2024资料员之资料员基础知识练习题及完整答案详解【全优】
- 2025安全员考试全真模拟模拟题附参考答案详解【巩固】
- 2024年高职单招自我提分评估及参考答案详解(精练)
- 2025年农村信用社招聘考试考前冲刺练习题及答案详解(考点梳理)
- 中小学生心理健康案例集
- 2025中国农业科学院棉花研究所第二批招聘7人备考考试题库附答案解析
- 部编版2025-2026学年三年级上册语文期中测试情境卷A卷(含答案)
- 做更好的自己课件-2025-2026学年统编版道德与法治七年级上册
- 移动照明车夜间施工租赁协议
- 重庆西南大学附中2025-2026学年九年级上学期开学考试语文试题
- 情感表达+课件+2025-2026学年人教版(2024)初中美术七年级上册
- 借名购车协议贷款协议书
- 先心病介入封堵治疗
- 不同截面钢牛腿设计计算(excel)
- 钢结构单层厂房施工组织设计方案
- 安全生产费用投入台账模报表
评论
0/150
提交评论