五年级奥数小数乘除计算.ppt_第1页
五年级奥数小数乘除计算.ppt_第2页
五年级奥数小数乘除计算.ppt_第3页
五年级奥数小数乘除计算.ppt_第4页
五年级奥数小数乘除计算.ppt_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重点难点考点易错点提分点,主讲老师:闫峰微信公众平台:scjy1008QQ群:474929086,五年级奥数,方法教学思维教学解题思路教学提分教学,教学主张:数学方法的学习是数学学习的主要方法.,闫老师班学生需要做到以下几点,1.认真听讲,做好笔记。2.努力思考,争取顺利高效完成家庭作业。3.经常复习、最好一周内将所讲内容复习3到5遍。4.大量做考卷,以历年我市重点中学试题为主。5.准备好纠错本。6.别费无用功,要做自己错的和不善长的。通过你的努力,你的成绩一定会有突飞猛进的。,第一讲:第一讲整数小数的速算和巧算,教学目标:1.四则运算包括加、减、乘、除,小数的四则运算。2.小数的四则运算时小学阶段的一个重点,要想算得快,算得巧,就得通过对数的分解,合并,转化等形式,依据四则运算的定律、性质、法则或利用和差、积、商的变化规律,采取正确合理、灵活的方法,使问题得到最圆满的解决,提高正确率,同时也可使我们的大脑反应更加敏捷,计算更加简便。,例1:巧算下列各题5.17+3.18+4.83+6.7216.79-3.47-2.534.542.9+5.462.984.512.587.430.42.5999+99.9+9.99+0.999,解:(1)5.17+3.28+4.83+6.72=(5.17+4.83)+(3.28+6.72)=10+10=20,加法交换律,加法结合律,(2)16.79-3.47-2.53=16.79-(3.47+2.53)=16.79-6=10.79,减法的性质,(3)4.542.9+5.462.9=(4.54+5.46)2.9=102.9=29,乘法分配律,(4)84.512.58=84.5(12.58)=84.5100=0.845,除法的性质,(5)7.430.42.5=7.43(0.42.5)=7.431=7.43,乘法结合律,(6)999+99.9+9.99+0.999,999+99.9+9.99+0.999=1000+100+10+1-1-0.1-0.01-0.001=1111-1.111=1109.889,凑整法,方法总结:1.利用定律进行简便计算。2.利用特殊算式进行简便计算。3.利用加(去)括号法则进行简便计算。4.利用减法的性质进行简便计算。,例2:计算下面各题:2.50.1253.2132.57.436.5-74.30.5534.80.2583.42.3+31.62.3,(1)2.50.1253.2=2.50.1250.48=(2.50.4)(0.1258)=11=1,乘法交换律,乘法结合律,132.5=(134)(2.54)=5210=5.2,除法的性质,7.436.5-74.30.55=7.436.5-7.435.5=7.43(6.5-5.5)=7.431=7.43,7.436.5-74.30.55=74.30.65-74.30.55=74.3(0.65-0.55)=74.30.1=7,43,34.80.25=34.80.2544=34.84=8.7,83.42.3+31.62.3=(83.4+31.6)2.3=1152.3=50,除法分配律,等差数列,小故事,一位教师布置了一道很繁杂的计算题,要求学生把1到100的所有整数加起来,教师刚叙述完题目,一位小男孩即刻把写着答案的小石板交了上去。1+2+3+4+.+98+99+100=?老师起初并不在意这一举动,心想这个小家伙又在捣乱,但当他发现全班唯一正确的答案属于那个男孩时,才大吃一惊。而更使人吃惊的是男孩的算法.,小故事,老师发现:第一个数加最后一个数是101,第二个数加倒数第二个数的和也是101,共有50对这样的数,用101乘以50得到5050。这种算法是教师未曾教过的计算等级数的方法,高斯的才华使老师彪特耐尔十分激动,下课后特地向校长汇报,并声称自己已经没有什么可教这位男孩的了。,卡尔弗里德里希高斯,此男孩叫高斯,是德国数学家、天文学家和物理学家,被誉为历史上伟大的数学家之一,和阿基米德、牛顿并列,同享盛名。,第一讲四则运算(等差数列求和)(一),等差数列的主要内容,1、等差数列的基本知识,2、等差数列的项,3、等差数列的和,一、等差数列的基本知识,(1)1、2、3、4、5、6(2)2、4、6、8、10、12(3)5、10、15、20、25、30像这样按照一定规律排列成的一列数我们称它为数列数列中的每一个数称为一项;第1项称为首项;最后1项称为末项;在第几个位置上的数就叫第几项;有多少项称为项数;,(一)数列的基本知识,(二)等差数列的基本知识,(1)1、2、3、4、5、6(2)2、4、6、8、10、12(3)5、10、15、20、25、30,(公差=1)(公差=2)(公差=5),通过观察,我们可以发现上面的每一个数列中,从第一项开始,后项与前项的差都相等的,具有这样特征的数列称为等差数列,这个差称为这个数列的公差。,二、等差数列的项,数列:1、3、5、7、9、11,第2项:3=1+2首项+公差1(2-1)第3项:5=1+22首项+公差2(3-1)第4项:7=1+23首项+公差3(4-1)第5项:9=1+24首项+公差4(5-1)第6项:11=1+25首项+公差5(6-1),等差数列的通项公式:等差数列的某一项=首项+公差(项数-1)等差数列的末项=首项+公差(项数-1)等差数列的首项=末项-公差(项数-1)适用条件:该数列一定要为等差数列,等差数列的某一项=首项+公差(项数-1),例1已知数列2、5、8、11、14求:(1)它的第10项是多少?(2)它的第98项是多少?(3)这个数列各项被几除有相同的余数?,分析:首项=2公差=3解:(1)第10项:2+3(10-1)=29(2)第98项:2+3(98-1)=293,等差数列的某一项=首项+公差(项数-1),例1已知数列2、5、8、11、14求:(3)这个数列各项被几除有相同的余数?,分析:被除数=余数+除数商等差数列的某一项=2+3(项数-1)规律:等差数列的某一项与被除数相对应,首项与余数相对应,公差与除数相对应,(项数-1)与商相对应。这个数列每1项除以3都余2。等差数列的每1项除以它的公差,余数相同。答:这个数列第10项是29;第98项是293;这个数列各项除以3余数相同。,例2已知数列2、5、8、11、14、17,这个数列有多少项。,分析:第2项比首项多1个公差,第3项比首项多2个公差,第4项比首项多3个公差,那第n项比首项多(n-1)个公差。,规律:末项比首项多的公差的个数,再加上1,就得到这个数列的项数。等差数列的项数=公差个数+1=(末项-首项)公差+1这个数列的项数=(17-2)3+1=6,小结:,等差数列项的有关规律,等差数列的某一项=首项+公差(项数-1)等差数列的每1项除以它的公差,余数相同。等差数列的项数=(末项-首项)公差+1,练习,1、一串数:1、3、5、7、9、49。(1)它的第21项是多少?(2)这串数共有多少个?2、一串数:2、4、6、8、2008。(1)它的第25项是多少?(2)这串数共有多少个?3、一串数:101、102、103、104、199。(1)它的第30项是多少?(2)这串数共有多少个?4、一串数:7、12、17、22。(1)它的第60项是多少?(2)这个数列各项被几除有相同的余数?,练习答案:,1、它的第21项=1+2(21-1)=41;这个数列的项数=(49-1)2+1=25;2、它的第25项=2+2(25-1)=50;这个数列的项数=(2008-2)2+1=1004;3、它的第30项=101+1(30-1)=130;这个数列的项数=(199-101)1+1=994、它的第60项=7+5(60-1)=302;这个数列各项被5除有相同的余数。(提示:等差数列的每1项除以它的公差,余数相同。),二、等差数列的和,例:6+10+14+18+22+26+30+34+38,分析:这是一个等差数列;首项=6,末项=38,公差=4,原数列的和:6+10+14+18+22+26+30+34+38倒过来的和:38+34+30+26+22+18+14+10+6444444444444444444两数列之和=(6+38)9解:原数列之和=(6+38)92=4492=198,等差数列的和=(首项+末项)项数2,例:计算1+6+11+16+21+26+.+276,分析:这是一个等差数列;首项=1,末项=276,公差=5,等差数列的和=(首项+末项)项数2?等差数列的项数=(末项-首项)公差+1,解:等差数列的项数:(276-1)5+1=56(项)原数列之和=(1+276)562=27728=7756,练习,1、计算(1)7+10+13+16+19+22+25+28+31+34+37(2)7+11+15+19+.+403(3)9+19+29+39+.+99(4)1+3+5+7+.+99,练习答案:,解:(1)这是一个等差数列;首项=7,末项=37,公差=3,项数=(37-7)3+1=11和=(7+37)112=242(2)这是一个等差数列;首项=7,末项=403,公差=4,项数=(403-7)4+1=100和=(7+403)1002=20500(3)这是一个等差数列;首项=9,末项=99,公差=10,项数=(99-9)10+1=10和=(9+99)102=540(4)这是一个等差数列;首项=1,末项=99,公差=2,项数=(99-1)2+1=50和=(1+99)502=2500,等差数列知识总结:,怎样判断一个数列是等差数列怎样求出等差数列的任意一项或项数怎样求出等差数列前几项的和必须牢记等差数列的基本公式和重要结论,1、等差数列的某一项=首项+公差(项数-1)2、等差数列的项数=(末项-首项)公差+13、等差数列的和=(首项+末项)项数24、等差数列的每1项除以它的公差,余数相同。,例3:0.1+0.3+0.5+0.7+0.9+0.11+0.13+0.99解法一:0.1+0.3+0.5+0.7+0.9+0.11+0.13+0.99=(0.1+0.3+0.5+0.7+0.9)+(0.11+0.13+0.15+0.17+0.19)+(0.91+0.93+0.95+0.97+0.99)=0.55+0.155+0.255+0.955=0.5+(0.15+0.25+0.35+0.45+0.55+0.65+0.75+0.85+0.95)5=(0.5+0.559)5=5.455=27.25解法二:0.1+0.3+0.5+0.7+0.9+0.11+0.13+0.99=(0.1+0.9)52+(0.11+0.99)452=2.5+24.75=27.25,4978.497849.78497.87.54.86.42.52.43.2,(1.3+3.4+0.72)(3.4+0.72+6.51)-(1.3+3.4+0.72+6.51)(3.4+0.72),解:(1)4978.497849.78497.8=4978.4978(497.849.78)=4978.497810=49784.978,解法(一):7.54.86.42.52.43.2=(7.52.5)(4.82.4)(6.43.2)=322=12解法(二):7.54.86.42.52.43.2=(7.54.86.4)(2.52.43.2)=(3.22.52.4)(322)(2.52.43.2)=322=12,(4)(1.3+3.4+0.72)(3.4+0.72+6.51)-(1.3+3.4+0.72+6.51)(3.4+0.72)设:1.3+3.4+0.72=a3.4+0.72=ba-b=1.3原式=a(b+6.51)-(a+6.51)b=ab+6.51a-ab-6.51b=6.51a-6.51b=6.51(a-b)=6.511.3=8.463,(5)a+b竖式,(5)a+b竖式,练习:(1)9.47-2.98(2)6.27-3.19-2.81(3)9.54-1.68+0.46-1.32(4)1.256.42.5(5)48.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论