立体几何中的向量方法讲义(学生版)_第1页
立体几何中的向量方法讲义(学生版)_第2页
立体几何中的向量方法讲义(学生版)_第3页
立体几何中的向量方法讲义(学生版)_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

立体几何中的向量方法考点一 用向量方法求空间角1.如图所示,在空间直角坐标系中有直三棱柱ABCA1B1C1,CA=CC1=2CB,则直线BC1与直线AB1夹角的余弦值为()(A) (B) (C) (D)2.已知正四棱柱ABCDA1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()(A) (B) (C) (D)3.已知点E、F分别在正方体ABCDA1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC所成的二面角的正切值等于.考点二 用向量法证明直线、平面的平行或垂直关系1.如图,在四棱柱ABCD-A1B1C1D1中,侧棱A1A底面ABCD,ABAC,AB=1,AC=AA1=2,AD=CD=,且点M和N分别为B1C和D1D的中点.(1)求证:MN平面ABCD.(2)求二面角D1-AC-B1的正弦值.(3)设E为棱A1B1上的点,若直线NE和平面ABCD所成角的正弦值为,求线段A1E的长.2.平面图形ABB1A1C1C如图所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC=,A1B1=A1C1=.现将该平面图形分别沿BC和B1C1折叠,使ABC与A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A1A,A1B,A1C,得到如图所示的空间图形,对此空间图形解答下列问题.(1)证明:AA1BC;(2)求AA1的长;(3)求二面角ABCA1的余弦值.考点三 用向量法求点到面的距离或两点间的距离1.如图,四棱锥PABCD中,PA底面ABCD,四边形ABCD中,ABAD,AB+AD=4,CD=,CDA=45.(1)求证:平面PAB平面PAD.(2)设AB=AP.若直线PB与平面PCD所成的角为30,求线段AB的长;在线段AD上是否存在一个点G,使得点G到点P,B,C,D的距离都相等?说明理由.2.如图,在正四棱柱ABCDA1B1C1D1中,AA1=2,AB=1,点N是BC的中点,点M在CC1上.设二面角A1DNM的大小为.(1)当=90时,求AM的长;(2)当cos =时,求CM的长.3.如图,BCD与MCD都是边长为2的正三角形,平面MCD平面BCD,AB平面BC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论