




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
mssa.rar EEOF.M function E,V,A,C=eeof(X, M, convert) % Syntax: E,V,A,C=eeof(X, M); E,V,A,C=eeof(X, M, 1); % This function performs an extended empirical orthogonal % function (EEOF) analysis of matrix X, for embedding dimension M. % Each of the L columns of X is a time series of length N. % % Returns: E - eigenfunction matrix. (LM by LM) % V - vector containing variances (unnormalized eigenvalues). % A - matrix of principal components. % C - lag-covariance matrix. % % V is ordered from large to small: E and A are sorted accordingly. % % Note that X is assumed to be centered. To center the data, use % the commands: % r,c=size(X); X=X-ones(r,1)*mean(X); before running EEOF. % If you also want to standardize the data, use: % X=X./(ones(r,1)*std(X);. % % If a third argument is supplied, the eigenfunctions/values will % be reordered into the same format as MSSA output - i. e. L blocks % of size M rather than M blocks of size L. % % This function provides the same output, within numerically determined % limits, as MSSA methods using Broomhead-King type covariance estimation: % it is intended as a check on those functions. % % Note that this function is *extremely* computationally intensive % for large matrices and lags. For example, if X is 1000 by 1000, % and M = 5, EEOF will take about 10 hours on a Cray YMP! Inputting % a subset of the PCs of X rather than the full data matrix can % substantially reduce the computational load. % % Written by Eric Breitenberger. Version date 1/11/96 % Please send comments and suggestions to % N,L=size(X); if M*L=N-M+1, disp(Warning: Covariance matrix may be ill-conditioned.), end % Create the extended matrix: T=zeros(N-M+1,M*L); for i=1:M T(:,L*(i-1)+1:L*i)=X(i:N-M+i,:); end % Compute the eigenvectors/values of the covariance matrix: C=(T*T)/(N-M+1); clear X E,V=eig(C); V=diag(V); A=T*E; % compute principal components if nargin=3 % Prepare MSSA-style output: % sort E,V,C, and A from M blocks of L to L blocks of M. ind=1:L:(M-1)*L+1; for i=1:L, index=index ind+i-1; end E=E(index,index); V=V(index); % sort the covariance matrix and PCs: C=C(index,index); A=A(:,index); end % Sort eigenvalues/vectors/PCs in descending order: V,ind=sort(-V); V=-V; E=E(:,ind); A=A(:,ind); 窗体底端 mssa.rar EOF.Mfunction F,L,B=eof(X,n,s); % EOF calculates the empirical orthogonal functions % and amplitudes (principal components) of the data matrix X. % Syntax: F,L,B=eof(X); F,L,B=eof(X,.9,norm); % % Input: X - data matrix. For a standard (S-mode) EOF analysis, % the columns of X are time series, while the rows % are spatial maps. The eigenfunctions in this case % will be spatial patterns, and the principal % components are time series. % n - number of eigenfunctions to return (optional). % If n is less than 1, it is interpreted as % a fractional variance (e. g. n=.9), and enough % eigenvectors are returned to account for n*100% % of the variance. The default is to return all EOFs. % s - Normalization option. If s=norm, then each % column of X will be normalized (assigned % unit variance). If s is not specified, the % data are not normalized. % % Output: F - eigenfunction matrix (columns are eigenvectors). % L - vector of eigenvalues.(all eigenvalues are returned) % B - principal components matrix. % % Written by Eric Breitenberger. Version date 1/11/96 % Please send comments and suggestions to % r,c=size(X); if cr, disp(Warning: Covariance matrix may be ill-conditioned.), end if nargin=1 n=c; s=none; elseif nargin=2 if isstr(n) s=n; n=c; else s=none; end end X=X-ones(r,1)*mean(X); % center the data if s=norm X=X./(ones(r,1)*std(X); % normalize elseif s=none error(Improper normalization option. Please check inputs.) end S=X*X; % compute the covariance matrix F,L=eig(S); clear S % sort eigenvectors, eigenvalues L,i=sort(diag(-L); L=-L; F=F(:,i); % figure out how many eigenvectors to keep: if n=var); n=i(1); end if cn, F=F(:,1:n); end % keep only first n eigenvectors B=X*F; % calculate principal components (first n) mssa.rar EOFCENT.Mfunction F,L,B=eofcent(X,n); % EOF calculates the empirical orthogonal functions % and amplitudes (principal components) of the data matrix X. % Syntax: F,L,B=eof(X); F,L,B=eof(X,.9); % % Input: X - data matrix. For a standard (S-mode) EOF analysis, % the columns of X are time series, while the rows % are spatial maps. The eigenfunctions in this case % will be spatial patterns, and the principal % components are time series. % n - number of eigenfunctions to return (optional). % If n is less than 1, it is interpreted as % a fractional variance (e. g. n=.9), and enough % eigenvectors are returned to account for n*100% % of the variance. The default is to return all EOFs. % % Output: F - eigenfunction matrix (columns are eigenvectors). % L - vector of eigenvalues.(all eigenvalues are returned) % B - principal components matrix. % % EOFCENT does the same thing as EOF, but does not allow the data matrix to % be modified within the function, thus avoiding the memory penalty of passing % the large data matrix into the function. If you want to center or % standardize the data, you must do it in the main workspace before calling % EOFCENT The commands r,c=size(X); X=X-ones(r,1)*mean(X); will center the % data. If you then want to standardize the data, use X=X./(ones(r,1)*std(X);. % % Written by Eric Breitenberger. Version date 1/11/96 % Please send comments and suggestions to % r,c=size(X); if cr, disp(Warning: Covariance matrix may be ill-conditioned.), end if nargin=1 n=c; end S=X*X; % comp
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年注册安全工程师考试真题(含答案)
- 2025年春季部编版初中数学教学设计八年级下册第1课时 平行四边形的概念及边、角的性质
- 高效求职指南:智网招聘面试题全面解析
- 求职捷径:高级职位应聘技巧大全:区域协调面试题及答案分析
- 专业技能培训计划:镇雄物理面试题答案精 编
- 顶尖学术团队面试题集锦
- 株洲地理专业面试题库:快速提升求职能力
- 高端职位面试必 备:反向旅游面试题及答案实战案例分享
- 公司安全知识培训简讯课件
- 2025年信息技术工程师职业资格考试试卷答案分析
- 美容院店长培训
- 肩袖损伤诊断与治疗
- GB/T 45817-2025消费品质量分级陶瓷砖
- 2025-2030中国功能性食品宣称规范与营销合规边界研究
- 信息部年度总结汇报
- 医疗收费培训课件
- 通风设施构筑工安全知识题库
- 三福门店日常管理制度
- 公司叉车维修管理制度
- 2025年广东高考物理试卷真题及答案详解(精校打印版)
- 新肇地区葡萄花油层构造脊发育特征及其对油气分布的控制作用
评论
0/150
提交评论