工程力学专业英语阅读.ppt_第1页
工程力学专业英语阅读.ppt_第2页
工程力学专业英语阅读.ppt_第3页
工程力学专业英语阅读.ppt_第4页
工程力学专业英语阅读.ppt_第5页
已阅读5页,还剩75页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专业英语阅读,工程力学专业,CourseArrangement,Presentation,Startfrom3rdclass,2presentationseachtimeGroupworkrequired4-5peopleineachgroup,12groupsintotalIneachgroup,i.e.someresponsibleforthepresentation,someresponsibleforansweringquestionsInvolvementfromaudiencewillearnextracreditsOrderofpresentationscouldbevolunteeredorspecifiedReferencerated,PresentationFlow,IntroduceyourselfIntroduceyourtopicandtheauthorsofthepaperName,university/institute,yearpublished,journalpublishedProvideanoutlineofthewholepresentationOroduction,experimental/simulationprocedure,results,discussion,conclusionBackgroundoftheproblemstudiedMethodology:howtostudytheproblemConclusionsobtained,SampleOutline,MotivationImportanceofcelladhesionExistingcelladhesionmeasurementtechniquesLaser-inducedstresswavetechniqueExperimentalSetupSamplePreparationExperimentalResultsObservationofcelldecohesionQuantitativeadhesionmeasurementConclusionandDiscussion,Requirements,EnglishspeakingChineseexplanationTrytohavemoregraphicsthansentencesontheslidesNotesareallowedduringthepresentation,最多三人讲,一共15分钟,不可超时页面上满页的文字不允许,要通过自己讲解主要基于文章的内容,可扩展,不可删减可使用卡片,记录要点,Mechanics,TheoreticalMechanics理论力学MaterialMechanics材料力学CompositeMaterialsMechanics复合材料力学FluidMechanics流体力学StructureMechanics结构力学FractureMechanics断裂力学ElasticMechanics弹性力学ContinuumMechanics连续介质力学QuantumMechanics量子力学,MechanicalSimulations:Solid,Fluid;BioMechanics;SoilMechanics;ArchitecturalMechanics.,Topics,EngineeringSimulations工程计算ExperimentalMechanics力学实验BioMechanics生物力学MaterialMechanics材料力学SmallScaleMechanics微尺度力学FluidMechanics流体力学,FrequentlyUsedWords,Units(单位):Distance:kilo-meter(km),meter(m),milli-meter(mm),micro-meter(mm),nano-meter(nm),pico-meter(pm)inch,foot,mileTime:second(s),minute(m),hour(h),day,yearmilli-second(ms),micro-second(ms),nano-second(ns),pico-second(ps),femto-second(fs),atto-second(as)Temperature:degreecentigrade(),Fahrenheit(F),Kelvin(K)Force:Newton(N),Stress:Pascal(Pa),mega-Pascal(MPa),giga-Pascal(GPa)bar,torr,atmosphere(atm)Strain,Prefixsupersonic;superposition;supercomputerMethodmethodologySolidsolidifyMechanicsmechanicalBiomechanicsmechatronicsmechanismmechanicalismmechanicallyfoamedplastic,Example:,MechanicalBehaviorofMaterials,MechanicalBehaviorofMaterials,byThomasH.CourtneyOriginaleditionpublishedin1990inUSPhotocopiesavailablein2004inChina,Outline,ElasticdeformationPermanentdeformationThetensiontestStrain-ratesensitivityYieldingundermultiaxialloadingconditionsMohrscircleThehardnesstestThetorsiontest,FractureFracturetoughnessTensilefractureCreepfractureFatiguefractureEmbrittlementSummary,Section1.1Introduction,Thisbookdealswiththemechanicalbehaviorofsolids,particularlyasthisbehaviorisaffectedbyprocessestakingplaceatthemicroscopicand/oratomiclevel.Theresponseofasolidtoexternalorinternalforcescanvaryconsiderably,dependingonthemagnitudeoftheseforcesandthematerialcharacteristics.Forexample,iftheforcesaregreatthematerialmayfracture.Lesservaluesofforcemayresultinmaterialpermanentdeformationwithoutfractureand,iftheforcesarelowenough,thematerialmaydeformonlyinanelasticway.Thetreatmentofmechanicalbehaviorinthisbookcloselyparallelsthesethreepossibilities.,Al5%-Cualloy:coolingrate10/s,Al5%-Cualloy:coolingrate1/s,SomeImportantWords,Fracture断裂Elasticdeformation弹性变形Externalforce外力Internalforce内力,Microscopic微观Atomiclevel原子水平Magnitude幅值Force力Permanentdeformation永久变形,Whileouraimistorelatethemechanicalbehaviorofasolidtomaterialstructureatthemicroscopicandatomiclevel,thisresponseismanifestedmacroscopically.Thus,tofulfilladequatelytheobjectiveofthistext,areasonablebackgroundintheconceptsofmechanicalbehaviorasmeasuredandassessedatamacroscopiclevelisrequired.Indeed,itisthiscouplingbetweenmaterialmicrostructureandbulkpropertiesthatconstitutesoneofthemostfruitfulareasofmaterialsscienceandengineering.,SomeImportantWords,Macroscopic宏观microscopic微观Coupling耦合Microstructure微观结构Bulkproperties整体性质,Section1.2ElasticDeformation,Whenasolidissubjectedtoexternalforces,itundergoesachangeinshape.Whentheloadisreleased,theshapemaynotreturnedtowhatiswaspriortotheapplicationoftheforce;underthesecircumstanceswesaythatthematerialhasdeformedpermanently.Forceslessthanthosethatcausepermanentdeformationdeformthesolidelastically;thatis,whentheforceissubsequentlyremovedthebodyassumesthedimensionsithadpriortoitsapplication.,TheelasticbehaviorofmanymaterialscanberepresentedbyaformofHookeslaw.,Theextensionofasampleislinearrelatedtotheforce.Theextensionalsodependsonsampledimensions.Forexample,doublingofinitialsamplelengthleadstoadoublingoftheextension,whereasifthesamplecross-sectionalareanormaltotheappliedforceisdoubled,theextensionishalved.,SomeImportantWords,Extension伸长externalforce外力Cross-sectionalarea横截面积Normal法向,normalto垂直,perpendicularParallel平行,Thisequationisoftenwritteninnormalizedformofstressandstrain,withEtheYoungsmodulusortensilemodulus.Amaterialhavingahighvalueofthetensilemodulusisstiff;i.e.,itisresistanttotensiledeformationofthekindjustdescribed.Linearelasticityofthiskindisobservedinallclassesofsolids.Itisthedominantmodeofelasticdeformationinallsolidsatlowtemperatures,incrystallinesolidsandinorganicglassesuptomoderatelyhightemperatures,andinnoncrystallinepolymersatlowtemperatures.Theextentoflinearelasticityisusuallyquitelimited;thatis,mostmaterialsarecapableofbeinglinearlyelasticallyextendedonlytostrainsontheorderofseveraltenthsofapercent.Linearelasticityrepresentsthestretching(orcompression/distortion)ofatomicbonds,andforthisreasonEisameasureofamaterialsbondstrength.,SomeImportantWords,Normalize归一化Tensilemodulus拉伸模量;Youngsmodulus杨氏模量Tensiletest拉伸实验Stiff硬;stiffness硬度crystallinesolid晶体Inorganicglass无机玻璃noncrystallinepolymers非晶态聚合物Stretching/compression/distortion拉伸/压缩/扭曲Atomicbonds原子键,Achangeinmaterialshapecanalsobecausedbyshearstresses.Thesecauserelativedisplacementoftheupperandlowersurfacesofthesolidillustrated.Theshearstrainandshearstressarerelatedthrough,withGtheshearmodulus.,InaphysicalsenseGcanbeviewedasameasureoftheresistancetobonddistortionwithinasolid.Thiscanbevisualizedbyconsideringthesimple-cubicsinglecrystal.Thechangeinatomicpositionsduetotheshearstressresultsfrom“bending”ofatomicbonds.,SomeImportantWords,Shearstress剪切应力Shearstrain剪切应变Relativedisplacement相对位移Position位置,Almostallclassesofsolidsalsoexhibit,atleastoveracertaintemperaturerange,nonlinearandtime-dependentelasticity.Thisviscoelasticity,asitiscalled,ismostcommontononcrystallinepolymers,butalsooccurstoamuchmorelimitedextentincrystallinesolidsandinorganicglasses.,Thestraininalinearelasticsolidisasingle-valuedfunctionofthestress;thatis,theloadingandunloadingsegmentsofthe-relationshipinaviscoelasticmaterialdependsonthesenseofloading.Moreover,thelevelofstressattaineddepends,too,ontherateatwhichaviscoelasticmaterialisstretched(thestrainrate).Withincreasingstrainrateaviscoelasticmaterialbecomesstiffer;forexample,the“average”modulus(1/1)increaseswithstrainrate.Viscoelasticbehaviorisalsomanifestedbyastrainthatvarieswithtimeunderconditionsofaconstantappliedstress.Thatis,uponinitialapplicationofthestresssomeinstantaneous(linearelastic)strainisfirstexperienced,followingwhichthematerialcontinuetoextend,withthestrainapproachingsomeasymptoticvalue.Onremovaloftheload,thelinearelasticstrainisinstantaneously,andtheviscoelasticstrainsluggishly,recovered.,SomeImportantWords,Viscoelasticity粘弹性Single-valuefunction单值函数Loading/unloading加载/缷载Strainrate应变率Linearelastic线弹性,Nonlinearelasticity,ofwhichviscoelasticityisoneexample,neednotbetime-dependent.Forexample,nonlineartime-independentelasticityisobservedincertainfine,strongcrystallinesolidscalledwhiskers.Whiskerstypicallyhavediametersontheorderofmicrometers,andwhenstretchedintensiontheydeforminalinearelasticwayuptostrainsontheorderofhalfapercent.Forelasticstrainsinexcessofthis(whiskersarecapableofsuchstrains)the-relationshipisnonlinear.Anextremeexampleofnonlineartime-independentelasticityisfoundinelastomers.Theseareaspecialclassofpolymersthatoveralimitedtemperaturerangearecapableofdemonstratingextensiveelasticstrains(uptoathousandpercentorso).Thisrubberelasticityisquitedifferentfromlinearelasticity,whichisasmentioned,ordinarilylimitedand,asmightbeexpected,thecausesofrubberelasticitydifferfundamentallyfromthoseoflinearelasticity.,SomeImportantWords,Whisker须晶Elastomer高弹性体,人造橡胶Rubber橡胶,SomeImportantWords,Fracture断裂Elasticdeformation弹性变形Externalforce外力Internalforce内力,Microscopic微观Atomiclevel原子水平Magnitude幅值Force力Permanentdeformation永久变形,SomeImportantWords,Macroscopic宏观microscopic微观Coupling耦合Microstructure微观结构Bulkproperties整体性质,SomeImportantWords,Normalize归一化Tensilemodulus拉伸模量;Youngsmodulus杨氏模量Tensiletest拉伸实验Stiff硬;stiffness硬度crystallinesolid晶体Inorganicglass无机玻璃noncrystallinepolymers非晶态聚合物Stretching/compression/distortion拉伸/压缩/扭曲Atomicbonds原子键,SomeImportantWords,Shearstress剪切应力Shearstrain剪切应变Relativedisplacement相对位移Position位置,SomeImportantWords,Viscoelasticity粘弹性Single-valuefunction单值函数Loading/unloading加载/缷载Strainrate应变率Linearelastic线弹性,SomeImportantWords,Whisker须晶Elastomer高弹性体,人造橡胶Rubber橡胶,Section1.3PermanentDeformation,Amaterialsresponsetouniaxialloadingisassessedmostoftenbymeansofatensiontest.Forceismeasuredwithaloadcell(oftenacalibrated,stiffspring);extensionismeasuredbyextensometer.Somematerials(brittleones)manifestonlymacroscopicelasticdeformationuptothestressatwhichtheyfracture.Examplesincludeinorganicglasses,polycrystallineceramicsatroomtemperature,andsomemetalsandtheiralloysatlowtemperatures.Mostmetalsatordinarytemperatures,andmanyceramicsathightemperatures,deformpermanentlybeforefracture.,36,s,o,y,k,e,elastic,yield,workharden,necking,T.S.,SomeImportantWords,Loadcell测压元件Calibrate标定Extensometer变形测定器;张量计Brittle脆性Polycrystalline多晶材料Metalsandalloys金属及合金,SomeImportantWords,Extension伸长externalforce外力Cross-sectionalarea横截面积Normal法向,normalto垂直,perpendicularParallel平行,Section1.3PermanentDeformation,39,s,o,y,k,e,elastic,yield,workharden,necking,T.S.,SomeImportantWords,Workhardening应变强化Truestress真实应力Engineeringstress工程应力,Engineeringstrainbydefinitionisoverestimated.Truestrainisbasedoninstantaneoussamplelength.Itcanbeapproximatedbyconsideringthetotalstraintoresultfromaseriesofsmall,incrementalextensions.,Expressindifferentialform,Integratefroml0toli,Theconstant-volumeconditionofplasticdeformationallowsrelationshipstobedevelopedamongstressandstrain,ForatensiletestForcompressiontest,therelationwillbeoppositeThedifferencebetweenthetrueandengineeringstressesandstrainsincreaseswithplasticdeformation.Thus,atlowstrains,soindiscussionofelasticdeformation,thereisnoneedtodifferentiatebetweenengineeringandtruestressandstrain.,Thetensilepointisassociatedwithageometricalinstability,andnotwithafundamentalalterationinmaterialbehavior.Eachandeverytensilebarhasinhomogeneitiesalongitslength;eitherwithinit(e.g.smallinclusionsorporosity)oronitssurface(e.g.machiningmarksorataperalongthebarsurface).Strainislocalizedintheseregions,andthisleadstoalocallygreaterreductioninarea.Forstrainslessthanthetensilepoint,theincreaseinflowstress,accompanyingthegreaterstrainsislargeenoughtoleadtoremovaloftheincipientinstability.Thisprocessoccursregularlyandrepeatedlyduringtensileloading,andcouldbemonitoredifsufficientlyaccurateinstrumentationwereavailable.Therateofworkhardeningdecreasesasdeformationcontinues;thatis,theincreaseinflowstressperunitstrainbecomeslesswithincreasingstrain.Thus,itbecomesprogressivelymoredifficulttoworkhardenanincipientinstabilitysufficientlytoremoveit.Asthetensilepoint,thework-hardeningcapacityhasbeendiminishedenoughthataninstabilityonceformedcontinuestodevelop.,Thecriterionforneckingisrelatedtothematerialsworkhardeningtendenciesv.s.thosethatinitiateinstability.ThecriterioncanbeexpressedquantitativelybyrealizingthatatT.S.theengineeringstressorequivalently,theforcereachesamaximum,Anothermeasureofmaterialductilityisreductioninareaatfracture,usuallyexpressedaspercentR.A.Thefinalcross-sectionalareaismeasuredastheareaoftheneckfollowingfracture.Since%R.A.isindependentofsamplegagelength,itismoreofamaterialpropertythanpercentelongation.Asaresultofthenonuniformdeformationfollowingtheonsetofnecking,truestressandstraincannotbecalculatedfromengineeringstressandstrain.However,truestresscanstillbedefinedastheforcedividedbytheinstantaneousarea,providedthelatteristakenastheminimumcross-sectionalarea.Somecaremustbetakenwhendoingthis,particularlyatthelaterstagesofneckdevelopmentandatstrainsclosetothefracturestrain.Awell-developedneckaltersthestressstateintheneckregionfromthatofsimpletension.,Words,Nonuniform不均匀Onset开始初始,TheeffectisthatT=F/Aneckbecomesonlyanapproximation.Additionally,internalvoids,whichareprecursorstofracture,forminthelaststagesofatensiletest,andthisleadstoanunderestimateofTwhenitiscalculatedintheaboveway.Byconsideringtheneckasthedeformingvolume,truestraincanalsoberedefinedfollowingnecking.Beforenecking,T=ln(li/l0)(orequivalently,T=ln(Ai/A0).Followingnecking,itisdefinedonlyonanareabasis,thatis,bythelatterexpressionwithAitakenastheneckarea.Becauseconfusionoftenarisesaswhentheyarenot,Table1.1synopsizesengineeringantruedefinitionsofstressandstrain,andexpressionforthemappropriatetotensileflowbeforeandafterneckingarealsolistedthere.,Words,Nonuniform不均匀Onset开始初始Precursor预示Redefine重新定义,Agraphoftruestress-truestraindoesnotdemonstrateanythingunusualattensilestrength(Fig.1.9).Thisisadditionalevidencethatneckingisgeometricinoriginanddoesnotreflectchangesinmaterialproperties.Onefinalpointisinorder.Wehavementionedthat,priortonecking,T0)theyieldyieldconditionisunaffectedbytheminortensilestress.Forexample,ifweinitiallyhaveastressstate10,2=3=0,andthenincrease2,theyieldconditionremains1=ysolongas12.thissomewhatunexpectedresultisatvariancewithexperimentalstudies,asisshownlater.Indeed,adifferentyieldcriterion,thevonMisesone,whichpredictsthatyieldinginthefirstquadrantisafunctionofboth1and2isgenerallymoreaccuratethantheTrescaoneforpredictingyieldingundermultiaxialstressstates.,ThevonMisesyieldcriterionisexpressasTheconditionstatesthatyieldingwillnottakeplaceforprincipalstresscombinationssuchthattheleft-handsideoftheaboveequationislessthaty.TheyieldlocusunderbiaxialloadingforthevonMisesconditionisillustratedinFig.1.11b.Weseethatitisanellipseinthe1,2plane,andthevonMisesandtheTrescaconditionsareequivalentonlyforuniaxialloading(10,2=3=0or20,1=3=0)andbalancedbiaxialloading(1=2,3=0).Asnoted,theyieldlociofFigs.1.11areappropriatetoasituationwhereoneoftheprincipalstressesiszero.BoththeTresaandVonMisesyieldcriteriaalsoapplytothesituationwherethisisnotthecase.,Whenthisisso,thecriteriacanbegraphicallydisplayedinthree-dimensionalprincipalstressspace.ThevonMisesyieldlocustheniscylindricalinshapewiththeaxisofthecylinderlyingalongthe111inprincipalstressspace.Thus,whenthiscylinderis“sliced”alongthe3=0plane,anellipseisfound.Similarly,theTrescayieldsurfaceisaregularhexagontranslatedalongthe111directioninprincipalstressspace.Whenthisshapeissectionedalongthe3=0plane,thedistortedhexagondisplayedinFig.11aisobserved.Finally,wenotethatthethree-dimensionalTrescayieldsurfaceisinscribedwithinthevonMisesone,touchingthelatteratthehexagonvertices.,AnumberofideashavebeensetforthattemptingtorationalizethevonMisesconditiononfundamentalgrounds.However,itisessentiallyanempiricalcriterionthatnonethelessmoreaccuratelydescribesyieldingundermultiaxialstressstatesthandoestheTrescacondition.ThisisshowninFig.1.11c,inwhichresultsobtainedfrombiaxialyieldingstudiesareshown.The

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论